Some Additions and Corrections to
Diagonal Method and Dialectical Logic'

UWE PETERSEN

The following additions are meant to indicate some of the directions my
research has taken since the publication of [15].

1. Addition 124g. Interpreting Weakening in LB°

The point of this addition is to show that sacrificing weakening does not
restrict expressive power in the presence of unrestricted abstraction.

A central issue in the development of a speculative logic is the ques-
tion of how far one gets without any structural rules. In this context I
shall present an interpretation of the formalized theory LD, as presented
in [15], p. 472, definition 41.22 (4) (essentially Gentzen’s LK without con-
traction but equipped with unrestricted A-abstraction) in its intuitionistic
linear subsystem. The relevant point is that L — A is available due to
the definition of L by means of unrestricted abstraction. The result is not
in any way surprising but it seems to me of interest in view of linear logic
and also in view of my ambitions to build logic without any structural
rules.

The principal approach goes back to [10], but [7] was to become
more influential. The approach taken here is in character closer to [17],
pp- 49 f, although it still differs from it, not only in that I use different
primitive symbols. It should be clear, however, that the present approach
is in no way original and that it can be extended to theories built on linear
logic, i.e., abandoning weakening is in character very similar to shifting to
intuitionistic logic from classical logic: in both cases it is double negation
which holds the key to the interpretation, in the sense that adding double
negation yields classical logic.

I Ttem [15] in the references for this paper starting on p. 171.
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I begin by providing the relevant definitions.

DEFINITION 1.1. The formalized theory LB® is obtained from the for-
malized theory LB™ introduced in [15], p. 1682, definition 124.6 (4), by
dropping weakening.

INTUITIVE CONSIDERATION 1.2. The notion L of falsum provides for the
deducibility of L = A (122.46v in [15], p. 1663). This, in turn, provides
for a substitution of weakening: instead of A — (B — A) the following is
LB°-deducible:

A=A 1l=-B
-A, A= -B
-—B,-A A= L
B,~A=-A 1l=1
—-—A,—-—B,-A= 1
——A, B = -4

Obviously A = —-—A is LB°-deducible. If double negation - —A = A
were also available, then this would be sufficient to prove weakening in
the form A — (B — A):

A= --A -—A,-—-B = -4
B = --B A,—~—B=--4
A B=--A —A=A
A B= A
=A— (B—A)

Apparently, however, weakening right is needed in a LB°-deduction of
double negation:
A=A

A=A L
=AA—1 1=1
A—-1)-1=4
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This is why I make recourse to the kind of interpretation that Gdel em-
ployed for the purpose of interpreting classical logic within intuitionistic
logic.

ProprosiTION 1.3. Inferences according to the following schemata are
LB°-derivable.

r=4
(1.31) S —
I'=--4
I'= -4
(1.3ii) _
r-A=~cC
Al= 1
(1.3iii) _—
-—A T =C
-—AT =1
(1.3iv) _
Al= 1

Proof. Straightforward. I only show 1.3ii as an example. Employ 122.46v
feom [15], p. 1663:

-A=-A 1=C
I'=s--4 -A,-—A=C
LY
I'-A=2C QED

DEFINITION 1.4. | X]|| is defined inductively as follows:

(1) ||u|| := u, u being a free or bound variable;

(2) [[s Etf :==—=(Isll T It

(3) I §lall = helFlal

(4) If I" ist the sequence Ay, ..., Ay, then || I'|| is the sequent
Al - [ Amll 5

G) I=C| =TI =[C].

PROPOSITION 1.5. ||C|| has the form ——A.

Proof. This is an obvious consequence of clause (2) of the foregoing def-
inition in view of the fact that the outermost symbol of every wif in the
language of LB® is C: If C' = s C ¢, then ||C|| = —=(||s]| C ||¢])- QED
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PROPOSITION 1.6. Sequents according to the following schemata are LB°-
deducible.

(1.61) L]l = L

(1.6ii) [l All = [[A]

(1.6iii) (A — 1) — L] =4

(1.6iv) |IL|l,-B= L

(1.6v) Al 1Bl = [| Al

(1.6vi) —(s€e|b|]) = se||b||

(1.6vii) ——(sehx ||Az]|) = serx ||A[]||

Proof. Re 1.6i.

aCa=ala

=\ (z Cx) E v (x Cx))

1l=1 =--(Az(zCz)Ciz(zCux)) 1l=1
=--(ALCAL) Ay~ (yCy) EAl)= L

M-y Cy) Cray——(ly——(yCy) Ex)= L
Ay~ Cy) Craz-—-y——(yCy) Ex)) = L
[VEM (VCE2)| =1

Re 1.6ii. Let == A; = || 4|| according to proposition 1.5.

IAll = || Al —-A; = A 1l =1
Al = —-—=A; ——A;,-A = L
|A]l,—~A1 = L

|| All, -4 = L
Al = [IA]l
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Re 1.6iii. Let == A; = || A|| according to proposition 1.5. Employ 122.46v
from [15], p. 1663, and 1.6i:

-A; = A L= L
—Aq,——A; = || L]
—AL Al = || L]]
—A; = MIA[ E AL
—A; = (M Al E L)
A = [[(A— 1) L]l = L
~ALAN[(A = D EML =L
~Ar = (A — L) EAJLI) L=1
~=(A[(A = DI ENL]), 41 = L
(A — D EMIL]) = Ay
[(A— 1) — L]l =[lA]

Re 1.6iv. Employ 122.46v from [15], p. 1663:

aCa=alCa
=i (zCz)Chx(zCx)) 1l=2B 1=1

1l=1 = --(Az(zCz) Cizx(zCx)) 1,-B=1
= L CAl Ay——(yCy CAl,-B= 1
= -—-(ALCAL) -—(Ay-—(yCy)EAL),"B= 1

M-y Cy) Cre——Qy-——(yEy) Ex),-B= L
-—~(Ay—(yCy) Crr——(hy-~(yEy) Ex)),~B = L
|L]l,-B= L

Re 1.6v. Let == A; = ||A]| and —— By = || B|| according to proposition
1.5. Employ 122.46v from [15], p. 1663:
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A= Ay 1 =-B;
-A;, Ay = B
-—By,-A1, A1 = L
-—B, A = -4 1l=1
——Ay,~—B1, -4 = L
——A, B = 4,
Al 1Bl = (1Al

Re 1.6vi.
—(seb) = (seb) 1l=1

——(seb),~(seb) = L
sehx——(xeb),~(seb) = L
——(sedx —(xeb)), ~(seb) = L

—=(sehr——(xeb)) = - (seb)

1.3iii

——(sedx —(xeb)) = sehr - (zeb)
Re 1.6vii. Let == [s] = ||2[s]|| according to proposition 1.5.
=21 [s] = Ay [s]
=y [s], Ay [s] = L
[A[s]]l, A [s] = L
seix ||Ax]]], ~A1[s] = L
—(sedx ||>Ax]]]), ~A1[s] = L
o(seda |[Az]]]) = = As]
(s [|RAfz]l]) = |[A[s]]]
o(sera |[Az]]]) = sera ||Al]| QED

1.3iii

PROPOSITION 1.7. Inferences according to the following schemata are
LB°-derivable.

I = = (sellt]])

(1.71)
= selt|
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se|tl], ' = C
(1.7i1)
~(selltl]), ' = C
Proof. This are fairly immediate consequence of 1.6vi and 1.6vii.  QED

The next step is to show that the interpretation of every LD, -deriv-
able inference is LB°-derivable.

PROPOSITION 1.8. Inferences according to the following schemata are
LB°-derivable.

(1.80) 1= C|

' |A, T = C|

(Lsii |0A.B.11= 0]

' |, B, A, 1T = C||
(Lsii) Ir=4] 4 z=C]
' |1, I = C||

(L8iv) |7 = ALs]|| 1B[s], II = C|
' ke Alz] C ay By, 1L 1T = O
(Lv) |1 2fo] = Bla]|

11" = hz Alx] © ry Bly]|

Proof. Re 1.8i. This is ‘weakening’. Employ 1.6iv. Distinguish two cases:
empty antecedent or not. In the first case, let -—B; = ||B|| and -—=C; =
|IC|| according to proposition 1.5.

= ||C|| _‘Cl = _‘01 1= —|Bl
= ﬂ_\Cl ﬂcl, _\ﬂcl = By
-C1 = By

—|ﬂBl = —\ﬂcl
Bl = IC]
1B =C|
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In the second case, let I" be the sequence Ay, ..., Ay. Employ 1.6iv.

[A1,..., Am = O
AL [[AL = Al [, - [ Am]l = 11C]]
AL A - 1 Am = (1€l
A, A,y A = O

Re 1.8ii. This is ‘exchange’. Obvious. left to the reader.
Re 1.8iii. This is ‘cut’.
11" = Al |A, 1T = C
1] = || All 1Al [T = 1|C]]
171, ]| = ||l
I, [T =l
|1, IT = C

Re 1.8iv. This is C-left rule. Let -—=C; = ||C|| according to proposition
1.5.

|B[s], 11 = C
|11 = A IB[s]ll, II11] = 1€
1] = || A[s]]] IB[s]l], II]] = ~—=Cy

a [|=&Az]l © ay Bl L [T = ~=Ch
a |[A] | € ry (Bl [171], L], ~Cr = L
——( |4zl T ay B]ID, 1T, [T, ~Cr = L
= [[A] ]| Exy IBlY]I)D, [171], [T = —=—Cy
[[ha Alz] Ey Blyl, 171, 1Bl = (1€l
A Afz] Ery By, I 1T = C|

1.3iii

Re 1.8v. This is ‘C-right’.
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117, 24a] = B[a]|
][, |12A[a]]] = [|B[a]|
1] = e [|2A[2]] © hy [|B[y]
I7]] = == [[A[] | Ery [B[y]]])
117 = ha Alz] E hy Blyl| QED

2. Addition 130d. Application of the fixed point property:
a numeralwise representation of the recursive functions
in ID,’

The possibility of obtaining a definition of the natural numbers in IiD;
that would provide induction in a “second order style” as, e.g., in section
41f in [15], is out of question for simple ordinal reasons: the consistency
of D, is already provable by means of a simple induction. As a result,
the possibility of defining recursive functions in a “Dedekind style” is not
open.?

There is, however, the possibility of numeralwise representing all re-
cursive functions. This possibility is essentially based on two features of
contraction free logic with unrestricted abstraction, viz.,

— the (direct) fixed point property, and
— the contractibility of =-wffs.

The (direct) fixed point property provides for terms that numeralwise rep-
resent recursive functions somewhat like the recursion theorem provides
for partial recursive functions.* What is specific about this numeralwise
representation of recursive function is the role of identity; i.e., what is

2 This addition was sparked by [18] and [19]. Cf. also [6]. An actual proof of the
numeralwise representability of the recursive functions does not seem to be available
in print. [18] is not published and [19] only states the result with reference to [18].

3 It is possible, of course, to provide definitions in that style, but due to the
deductive weakness of IID, their characteristic properties cannot be proved in IiD;.
As emphasized in [19], p. 10 (albeit with regard to a slightly different system), “such
a theory is descriptively rich” but “proof theoretically very weak (as its consistency is
established by the induction up to w).”

4 There is a significant difference, though: the recursion theorem is compatible
with classical logic, but not so the (direct) fixed point theorem.
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being considered are numerals, not anything that equals it.> In this way
some valuable classical features are rescued for our non-classical situation
like the very contractibility of =-wffs.

This approach works well for all functions defined by n-recursion. It
is the sort of closure operation constituted by minimization that needs
special attention. What is required is a form of trichotomy in order to
prove that minimization can be numeralwise represented.

The proximity of the proof presented here to the one in [3], pp. 192
199, or [2], pp. 166171, for the case of Robinson’s arithmetic will be
obvious. The main point is that the smaller relation and with it the rep-
resentation of the least number operater is based on a term B* which is
introduced as a fixed point. It acts like a strengthened kind of B-axiom® in
that it allows to prove a form of trichotomy. As in the case of Robinson’s
arithmetic heavy weight lies on the use of meta-theoretical induction.
That’s where results are only established for numerals.

I begin with an adaptation of the notion of numeralwise representa-
tion to the situation of IID,.

DEFINITIONS 2.1. (1) A k-place total function f is said to be numeralwise
represented by f in L'Dy, if the following holds:

Fps 7
if f() = m, then { LD 1”’m5ff
Fup, Nz(i,zfe f —x=m)
for all k-tuples 0 of natural numbers and natural numbers m.
(2) A function f is said to be numeralwise representable in IiDs, if there
is a term ¢ which numeralwise represents f in IiD;.

Next come the exclusive successor notion and some of its properties
which will be needed later.

DEFINITION 2.2. s/ :=Az(zesox = s).

5 This means, in particular, that functions cannot be employed to apply to argu-
ments; i.e., , instead of f[z] = y one only has something like {y, zf€ f.
6 Cf. in definition 128.36 on p. 1764 of [15].
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PROPOSITION 2.3. Sequents according to the following schemata are ID; -
deducible.

(2.31) = ses’

(2.3i1) sT=0=

(2.3iii) st=th= set!

(2.3iv) senf=s'=010---0sf=nos=n
(2.3v) sf=nl=s=00¢---0sT=nos=n
(2.3vi) s=nfsf=00.--.0osf=n=
(2.3vii) sf=n"=s=n

Proof. Re 2.3i and 2.3ii. As for their inclusive counterparts, cf. 128.29i
and 128.29ii in [15], p. 1759.
Re 2.3iii.

= sesf setl = setf

sesh — setl = setf

st =t = setf
Re 2.3iv. Employ a meta-theoretical induction on n.

n=0:
se0 = s=0= s =0f
5e0f=s5=0
se0f = sf = 0f
se0i=s"=0"0---0sf=nos=n
n=m'

semf =s'=0l0...0osf=m s=mf=s=m’

semios=ml=s"=00---0osf =mos=m’

sem"=s"=00c---osf=mos=ml
Re 2.3v. Employ a cut on 2.3iii and 2.3iv:

st=nf = senf senf=s"=00.-..0osf=nos=n

&
sT=n"=s"=00---0sf=nos=n

Re 2.3vi. Employ a meta-theoretical induction on n. For n = 0, the situ-
ation is immediately clear from 126.45i in [15]:



104 UWE PETERSEN

As regards n = m’:

mif=0"= mif=ml =

sl =ml sf =07 = sl =ml st =ml =

n ¢o-introductions left

sf=milsf=00---0sf=ml=
Re 2.3vii. This is now an immediate consequence of 2.3v and 2.3vi:

sft=nf=s"=0c¢--0sf=nos=n sf=nfsf=0¢.--0sf=n=

sf=n"=s=n QED

In view of result 10.6 in [15], p. 77, it is sufficient to consider:

1. basic functions Z, S, I, and the characteristic function of equality
2. composition

3. addition and multiplication

4. minimization

I begin with a numeralwise representation of the functions listed under 1
and 2.

DEFINITIONS 2.4. (1) zero:=hzy(y =0).
(2) SUC = =iy (y = o).

(3) idy' := ATy (y = an) .-
4) char_ = )\xyz((x =yoz=0)V(rZyoz=1)).
(4) complh, g =\ ez (&,p1egro...0F, ynJegn o, 2Jeh).

REMARK 2.5. In view of the definition of Azy §[x,y], the definition of
zero, e.g., amounts to Az \/z \/y(z = {z,yfoy =0).7

PROPOSITION 2.6.

(2.61) zero numeralwise represents the zero function Z
(2.6i1) suc numeralwise represents the successor function S
(2.6iii) id numeralwise represents 1

7 The axiom employed in [18] amounts to Az \/z (2 = {z, 0f) in my symbolism.
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(2.6iv) char— numeralwise represents the characteristic function
of equalily Xeq
(2.6v) complh, §] numeralwise represents the composition of

functions Cnlh, g1, ..., gm|

Proof. Completely straightforward, but to see the point of the notion of
identity in the definitions, I just indicate how to treat the case of zero:
What has to be shown is

Fup, (n,0jerzy(y = 0), and

Fup, Az((n,zfezero — 2 =0).

The first one reduces to 0 = 0 and the secondonetoa =0=a =0. QED

PROPOSITION 2.7. There are terms add and mult satisfying

(2.71) LD, b add = \z1z2m5 ((xa=00x3 =21)0
VyVz (22 =y oas = 270z, yf, 2 € add))

(2.71) LDy F mult = hxy2z92s (22 = 0023 = 0)o
VyVz(xe =y oz, 21}, 23) € add oz, y), 2) € mult))

Proof. This is again an immediate consequence of the fixed point property.
QED

The following convention is introduced for the convenience of formu-
lating results regarding add and mult.

CONVENTION 2.8.
(1) ADD :=hzq1zezs3 ((x2 =00axs = x1)0
VyVz (22 =y oas = 270z, yf, 2 € add))

(2) MULT = r1x0w3 (12 = 0023 = 0)0
ViV (@2 = g/ 000z, 21}, 23 € add 01{1, y), 25 mat))
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COROLLARY 2.9. Inferences according to the following schemata are D) -
derivable

se ADD, I = C

(2.91)
seadd, I’ = C
(2.9i) I' = se ADD
I' = seadd
(2.0 seMULT, = C
semult, I’ = C
(2.91v) I' = se MULT
I' = semult

PROPOSITION 2.10. Sequents according to the following schemata are
LD, -deducible.

(2.101) = {{s,0}, sje add

(2.10ii) {s,t),rfe add = s, 7Y, r e add

(2.10iii) {s,0),tfeadd =t =s

(2.10iv) Nz ({(s,nf,zje add — x = p),{s,n},tfcadd = t = p!

Proof. Re 2.10i.

=0=0 =Ss=s

=0=0o0s=s
= (0=0os=s)o\yVz(0=y'os=zo{s,y},zcadd)
= {{s,0), sje add

Re 2.10ii. In view of 2.19i below, this is left to the reader.
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Re 2.10iii.
0=bv =
t=s=t=s 0=0bt=c s, by, cjeadd) =
0=0,t=s=>t=s 0=bot=colls,bf,cfcadd) =

0=0ot=s=t=s VyVz(0=y'ot=2o0{{s,yf,2fcadd) =
(0=0ot=s)o\VyVz(0=y'ot=2"0{s,y},zjcadd) =t=s
{s,0),tfeadd =t =s

2.9ii
Re 2.10iv. Let A stand for Az ({{s,nf,zfeadd — x= = p) and C for
VyVz(ni=yiot=2o0{(s,y},zjcadd):

c=p=c=p

{{s,nf,cyeadd = {{s,ny,cjeadd c=pt=cf=t=p

Ws,nf,cfeadd — c=p,t =, Ws,nf,cfeadd =t = p’
At =cf {Us,ny,cyeadd =t = pf
An=0bt=c" s, b, cfeadd =t =p"
A,nf =bft = cf s, bf,cfeadd =t = p’

2.3vii

Anf=blot=co(s,bf,cfeadd =t = p’

= -(nf =00t =s) Nz (Qs,nf,zfeadd — x =p),C =t = pf

Az ({(s,n),zfcadd -z =p),(n" =00t =s)oC =t =p’

2.9ii
Az ({s,nf,zfeadd — x = p),{{s,nf},tfcadd = t = p* QED

ProposITION 2.11. Sequents according to the following schemata are
I'D; -deducible.
(2.111) = {{s,0), 0y € mult
(2.1111) s, t5, s15e mult, {s1, 8§, 7y e add = {{s, t7), rfe mult
(2.111i1) s, 0),tfemult =t =0
(2.11iv)  Az((s,n},zje mult — x = ry), {s,ni}, t) e mult,
Nz, s),zjeadd - x=rs) =>t=ry
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Proof. Essentially as for 2.10; I shall only treat the second as an example.
Re 2.11ii. To save space, let C be short for (¢/ = Oor = 0) and A for
{{s,t}, s15€ mult:

A= th=t"ols,tf, s1femult {{s1,8),rfeadd = {{s1, sf,r)cadd
s, tf, 815 emult, ({s1, sV, rYeadd = t' = t' 0{{s1, ¥, rfcadd 0{{s,tf, 81§ e mult
A, {s1,s),rfeadd = \VyVz (' =y"' o0z, s}, rfeadd o ({z1, y), 2§ e mult)
A, {s1,8),rfeadd = Co\yVz (' =y oz, s),rfeadd o a1, y), z) e mult)
Ws, t}, s1femult,{{s1, s¥,rfcadd = {{s,t",rf e mult

Re 2.11iv. To save space, let A stand for A z({{s,nf, zje mult — z = ry)
and C for \VyVz (n' = y' oz, s),tfcadd o{ls,y), zje mult) and F for
Az({{r1,s),zfcadd — x = ry):

Wry, s, tyeadd = {Wr1, s),teadd t=ro=1t=ry

{r1, ), theadd — t = ro,{{r1, 8§, tfcadd = t = 1o

F,{(r1, s),tfeadd =t =19

s, nf, cyemult = Ws,nf,cfemult c=r1,F,{c,s),tjcadd =t =ry

Ws,nf, cfemult — ¢ =r1,{c, sf,tyeadd,{{s,n), cfemult, F =t = ry
A, (e, s¥,tfeadd,{{s,nf,cfemult, F =t =

A,n=b,{c,s),tfeadd, (s, bf,cfemult, F =t =12

A,nf = b, {c, sV, t e add, (s, by, cyemult, F = t = ro

A, nf = bfoe, sy, tfeadd o{{s, by, cfe mult, F =t = ro

2.3vii

-(nf=00t=0) AC,F=t=rs
A -(nf=0o0n=0)0C,F=t=mr

2.9iv
A, Ws,nfY, tfemult, F =t =rq QED

PROPOSITION 2.12.

(2.12i) add numeralwise represents the function +

(2.12ii) mult numeralwise represents the function -
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Proof. Re 2.12i. What has to be shown is that if m + n = p, then

Fup, (m,n},pjeadd, and

Fup, Az({((m,n},zjcadd — z =p).
In both cases, employ a meta-theoretical induction on n.
As regards the first one:
n = 0. What has to be shown is -y, {{m, 0, mje add. This is 2.10i.
n =k’. What has to be shown is that if p is the numerical value of
m + k, then by ({m, k), p’fe add. By the induction hypothesis, Fyip,
{{m, kY, pje add. This yields the claim by a cut with 2.10ii.
As regards the second one:
n = 0. What has to be shown is Fpip Az ({{m,0),zjc add — = = m).
This is easily obtained from 2.10iii.
n = k’. What has to be shown is that if p is the numerical value of m + k,
then Fpip, Az ({Im, K7}, xfe add — = = p'). By the induction hypothesis,
Fup, Az({{m,k),zjeadd — = = p). By a cut with 2.10ii this yields
Fup, ((m,k7},cjeadd = ¢ = p’ which yields the claim by —- and A-
introduction.
Re 2.12ii. What has to be shown is that if m - n = p, then

Fup, (m,nf,pjemult, and

Fup, Az({({m,nf,zfe mult — z =p).
Again, employ meta-theoretical inductions on n.
As regards the first one:
n = 0. What has to be shown is by, {{m, 0, 0fe mult. This is 2.11i.
n =k’. What has to be shown is that if p is the numerical value of
m - k and q is the numerical value of p + m, then -y, {{m, k7Y, ¢y e mult.
By the induction hypothesis, -y, {(m, kJ, pfe mult and by 2.12i, by,
{{p,m}y, ¢S € add. Two cuts with 2.11ii yield the claim.
As regards the second one:
n = 0. What has to be shown is by Az({{m, 0f, zje mult — = = 0).
This is easily obtained from 2.11iii.
n = k’. Let p be the numerical value of m - k and q that of p + m. Then,
by the induction hypothesis, Fpp Az ({{m, k), zje mult — = = p) and
by 2.12i, Fpp Az ({({p, mf, zf€ add — = = g). Two cuts with 2.11iv yield
Fup, (m,k7},tfemult = t = q. Applying a —- and a /-introduction
then yields by Az ({im, k7f, zfe mult — z = q). QED
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REMARK 2.13. Of course, all total functions definable by 1-recursion can
be numeralwise represented in that way. If the function f is defined by
primitive recursion from the functions g and b, and g and b are represented
in IIDy by g and h, respectively, then f is represented by the term f
satisfying the following fixed point property in IiD;:

f=Ar12223 (22 = 002y, 23)€9)0

VyVz (z2 = y' oz, y), 2)e folllzn, y), 2], w3 h))

As a matter of fact, n-recursion can be represented in that way too. As
an example, consider the so-called Ackermann function. Employ the fol-
lowing fixed point ak for a numeralwise representation of the Ackermann
function:

ak = Ar1xox3 (11 = 0oaz = 297) 0
Vy (21 =y oze = 00({y, 07), x3fc ak) o
Vy1 Vyz2 Vz (21 = yiloze = gl o{(z1, yof, 2fe ako{{z, 2), z3jeak) .
In other words, all stages of recursion can be numeralwise represented in

a straightforward manner. This may provoke the question as to what the
least number operator actually adds to the notion of recursion.

The following schemata of inference will come handy in the further
presentation. They are instances of what I called an “exclusion principle”
in remarks 116.6 and 119.1 in [15], for example.

PROPOSITION 2.14. Inferences according to the following schemata are
L'D, -derivable.
I' = §[s,0, ] I, {{s,af, by add = F[s,a’, b’
I, {{s,t),rfe add = §[s,t,7]
I' = 3[s,0,s] I 1, sy, r¥e add, s, af, bf e mult = Fs, al, 7]
I (s, t), rie mult = §[s, t,7]

(2.14i)

(2.14ii)




ADDITIONS AND CORRECTIONS TO DIAGONAL METHOD ... 111

Proof. Re 2.14i.
I, {s,af,bfcadd = F[s, a’, b’]
I = §[s,0, ] It=a',r =4 {s,af,bfcadd = §[s,t,7]

rt=0,7r=s= F[s,t,r] It=ad'or=0b"0s,af,bfcadd = F[s,t,7]
It=0or=s=g[s,t,r] [LVyVzt=y'or=z'o{s,yf,zfcadd) =F]s, t,r]
I(t=0or=s)o\VyVz(t=y'or=2"0(s,y),zjcadd) = F[s,t,7]
I, s, tf,rfeadd = Fs, t,r]

Re 2.14ii. Let 2 := (t = *170{{xq, s}, 7)€ add o {{s, 1§, x2 )€ mult):

I, 1b, 8§,V e add, (s, a}, by e mult = F[s,a’,r]

I' = §[s,0,0] It = a", b, s¥,rfcadd, (s, af,bf e mult = F[s,t,7]
It=0,r=0= g[s,t,r] I Aa, b] = Fs, t,7]
It=0or=0= §[s,t,r] I'\Jy\zy, z] = §[s, t,7]

It=0or=0)oVyVzAqy, 2] = Fs, t,7]
I s, tf,rfemult = §[s, t,7] QED

PROPOSITION 2.15. Sequents according to the following schematla are
LD, -deducible.

(2.15i) {s",n}, tfe add = s, n},tfe add
(2.15ii) {,af,n'feadd = a=00...0ca=n

Proof. Re 2.15i. Employ an induction on n. As regards the induction
basis, employ 2.10iii:

Wsh, 05, tfcadd = t = s

Wsh, 0y, tyeadd = 0" = 0ot = s"0{{s,0, sfcadd
st 0%, tfeadd = \y Vz (0F = y'ot = 2" 0{{s,y), 2f e add)
Wsh 0, tycadd = (0P = 0ot =s5) o Vy V2 (0F =y 0t = 2" 0{{s,y}, 2J e add)
{sh, 05, t5 e add = 15,0, tf cadd
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As regards the induction step, firstly, employ 2.3ii:
0=n"=

0=nlt=s" = Us,n},tfecadd
=n'ot=s = {s,nf, tjcadd

Secondly, employ the induction hypothesis. In the proof figure to follow
let C stand for (nfif =00t = s):

t=cf=>t=cf Wsh ny, cfeadd = {{s,n’y,cfeadd
cosh,ny, cfeadd = {{s,n'f, cfcadd
= cfolsh,ny,cfeadd = t = ' 0{{s,nf,cfeadd

t=cfos,bf,cfeadd = n'f = n/Tot = cf

t=c'olWs!,nf,cfeadd =t =c’ t=

o{{s,nff,cycadd

t=co{s’bf,cfeadd = \Vy \Vz (n" =y ot = 2"o{s,y), 2§ cadd)

t=c'o{{s,bf,cyeadd = Co\yVz "=y ot=2"o0(s,yf
t=cfo{{s!,

, 25 eadd)

nf,cyeadd = {{s,n/"y,tfcadd
n=b,t=co{s, b,
nf = b,

cyeadd = {{s,n’"}, tycadd

= cfo (s bf, cyeadd = {{s,n},tfcadd

F=blot = CFDD(?SF, by, cfeadd = ({s,nffy,tfc add
VyVz(n' =y ot =2"o(s"y)

,zfeadd) = {{s,n'7, ty e add

Together:

(0=nfot=s)o\yVz(n' =y ot =2oWs’,y), 25 cadd) = {s,n’",tfcadd
Wsh, nff, tfcadd = s, ¥, tf c add

Re 2.15ii. Employ an induction on n. I only consider the induction step
Let & stand for ] = %90 --- 0% =nl:
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Wt af,nYeadd = a=00...0a=n

Wt ay,nffeadd = a" =00 ... 0af =n’
s=a’,n" =b,{ch af,bfcadd = €[s,07]

s = af nff =o', [, af, by e add = €[s, 0]

2.3vii

0=c'= s=a'on”=b" o, af,bjcadd = €[s, 0]

s=0onf=cf=s=0 \yVz(s=y'on =20, yf,25cadd) = €[s, 0]
(s=0onT=chHoVVyVz(s=y'on' = 2oy}, zfcadd) = €s, 0]

Ut sV, nfffecadd = s=00...05=nf QED

The essential point for a representation of the least number operator
is the availability of a smaller relation < satisfying the following three
conditions for all terms s and every numeral n:8

1. =(s<0)

2. s<n/<—=s=0V...Vs=n

3.s<nVs=nVvVn<s
i.e., a certain trichotomy of the natural numbers: two natural numbers
are either equal or one of them is smaller than the other. In order to suit
the present framework, the various notions involved have to be adapted.
Equality will be replaced by identity, the inclusive successor will be re-
placed by the exclusive successor, V will be replaced by ¢. The task left is
to find an appropriate notion of <. That’s where a rudimentary® notion of
natural number comes into play: m is smaller than n, if there is a natural
number p such that m 4+ p = n.

What has to be accommodated for is a certain self-reference in the
definition of the natural numbers which is expressed in the simple state-
ment: n is a natural number, if it is either 0 or the successor of a natural
number. In other words, natural number is defined in terms of itself. This
is what the fixed point of the next proposition aims at.

PRrROPOSITION 2.16. There is a term B* satisfying
LD, F B* =)z (z=00\/y(yeB oz =y/)).
8 Cf. [13], p. 40, proposition 1.3.3. Note, however, that the A in the third condition

listed there is obviously a typographical error that has to be replaced by V.
9 ‘Rudimentary’, because full induction is not required.
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Proof. This is an immediate consequence of the fixed point property as
stated, e.g., in [14], theorem 7.3, p. 382, or theorem 130.8 on p. 1779 of
[15]. QED

COROLLARY 2.17. Inferences according to the following schemata are
LD, -derivable

sexx(z =00 \yyeB*oz=yh), ' = C

(2.171)
seB*, ' = C
(2.17ii) I'= sedz(z =00 \y(yeB oz = yl))
I' = seB*

DEFINITION 2.18. \/B2 §[z] := Vz(zeB* 0 F[z]).
I begin by listing the relevant properties of B*.

PROPOSITION 2.19. Sequents according to the following schemata are
LD -deducible.
(2.191) = 0eB*
(2.19ii) seB* = s'cB*
Proof. Re 2.19i. Employ 2.16:

=0=0

=0=00V\VBy(0=yh
= 0exz(z =00 \/By(z=y))
= 0eB*

2.17ii.
Re 2.19ii. Employ 2.16:

seB* = s¢B* = sf=sf

seB* = seB*os = s’
seB* = /By (s' =y
seB* = sf = O<>\/B*y(5’@E y7)
seB* = sTedz (z =00 /By (z = y))
2.17ii.

seB* = s"eB* QED
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PRrROPOSITION 2.20. Inferences according to the following schema are
LD, -derivable.

I = §[0] I' aeB" = §[a]
I' seB* = §[s]

Proof.
I' aeB* = Flaf]

I'aeB* s =af = F[s]
I = 3[0] I'aeB*os =al = §s]
I''s=0= 3ls] LBy (s =y = 3s]
Is=00\By(s=y’) = s
Isex(x=00\By(x=y)) =3Fls]
I' seB* = §[s] i QED

For minimization a smaller-relation between numerals is required
which is introduced next (essentially taken from [18], p. 8):

DEFINITION 2.21. less := Azy /B2 (({2!, zf, yfe add) .

PROPOSITION 2.22. If m and n are two natural numbers such that m < n,
then = {m,nfeless is LDy -deducible.

Proof. If m < n, then there is a natural number p such that p’ + m = n.
By 2.19, = peB* is IIDj-deducible and by the numeralwise representabil-
ity of addition, = {{p’, mJ,nje add is L'D;-deducible.

= peB* = {(pf,m¥,nfecadd

= peB* o{{p/,m},njeadd
= /B2 (2", my,nfe add)
= {m,njelxy \/B*Z(Z“(z’@, xy,yye add) QED

PROPOSITION 2.23. If n is a natural number, then sequents according to
the following schemata are LD, -deducible.

(2.231) teB* =10,tfeless
(2.23ii) seB*, (s nY, tfe add = (n',tyeless
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(2.23iii) {n, sfeless = nf = so{nf, sjeless
(2.23iv) n=s= {s,nffeless

(2.23v) {s,07eless =

(2.23vi) {s,nffeless=>s=00...05=n
(2.23vii) {s,nfeless = {s,nfeless

Proof. Re 2.23i. Employ 2.10i:

teB* = teB”" = (5,05, "V e add
teB* = teB* o{{t/,0},t'fc add
teB* = /B2 ({{27,05, /S c add)
teB* =10,tfeless

Re 2.23ii. Employ 2.15i:

seB*{(s",n), tjeadd = seB* o{{s/, nl}, tfc add
seB* (s’ nY, tfe add = \/Bz ({21, nl}, tfe add)
s GB*, Q<D<Sffa nya tyG add = Q<Tlf, tyG less

Re 2.23iii. Employ an induction on n. As regards the induction basis,
employ 2.10iii and 2.23ii. Let C stand for 07 = s ¢ {07, sfeless:

(07,0, s)eadd = 0'=s aecB*,{a/, 05, sfe add = {07, sfeless
({07, 0¥, sfe add = C aeB*, (a7, 0}, sfe add = C
ceB*, {{c7,0}, sfe add = 0" = s o {07, sfeless
ceB* o, 0}, sfeadd = 07 = s o {07, sfeless
VB2 (127, 0V, sfe add) = 07 = 50 {07, sVe less
10, sferay VB2 (W2, 2y, y e add) = 07 = 50 {07, sVe less

As regards the induction step, employ again 2.10iii and 2.23ii. Let C stand
for n'' = s o {nfl, sjeless:
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W07, nff, sfeadd = n'"=s  aeB*,{a'f, n’), sfc add = (n/7, sjeless
{07, n'Y, sye add = C

aeB*, (o, n'}, sje add = C
ceB*, (!, n'y, sfe add = nl = s o {nfl syeless

ceB*o{{cf,ni}, sje add = niT = s o {ni7 sjeless
/B2 (Wz1!,nlY, sVe add) = nit = s o (nl, Ve less

', syerzy VB2 (127, ), yS € add) = nil = s o (i1, s§eless
Re 2.23v.

0=b" =
0=cd = s=a'A0O=b" A, af,bjeadd =
s=0AN0=c" = VyVz(s=y'00=2a@d,yf, 2)cadd) =
(s=000=c)oVyVz(s=y00=20{d, yj,2fcadd) =

{cf, s},0€ add =
ceB* {1, s¥,0fe add =
ceB*o{{d, s),0f¢ add =
VBZ (1127, s),0¥€ add) =
s, 0¥ehay \VB2 (27, ),y € add) =
Re 2.23vi. Employ 2.15ii:

{,sh,nfeadd = s=00...08s=n

ceB*, {{c,s),nfeadd = s=00...08=n
ceB*o{{d,s),nfeadd = s=00...08s=n
VBZ ({27, s§,nifeadd) = s=00...05=n

(s,nfyerey /B2 (127, 2),yfcadd) = s =00...05 =n

Re 2.23vii. Distinguish two cases according to whether n = 0 or n = p/,
p € N. The first case is an immediate consequence of 2.23v. As regards
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the second case, employ 2.23vi and 2.22:
= 10,p"feless =10, p"feless

s=0=1{s,pfcless s=0"=s,p"ecless

s=00s=0"=1s,p"Veless

p analogous ¢-introductions

{s,p’feless =>s=00---0s5=p s=00---0s=p={s,pfeless

»
{s,pffeless = {s,p/Yeless QED

PROPOSITION 2.24. For all natural numbers n, sequents according to the
following schemata are LDy -deducible.
(2.24i) seB* = {(s,0feless 0 s =010, s)e less
(2.24ii))  {s,njelessos =noln,s)eless =
{s,nffeless o s = nfo{nf sfeless

(2.24iii) seB* =1s,nfelessos=no{n,sjeless
Proof. Re 2.24i. Employ 2.23i:

=0=0 aeB" = 10,affcless

=70,0fcless o0 =0070,05cless aecB” = {af,0fclessoaf = 0070, affeless

seB" = {s,0feless o s = 0070, sfeless
Re 2.24ii. By 2.23vii

{s,njeless = {s,n'jeless

(s,nyeless = (s,nifeless o s = nlo(nl, sfeless
and by 2.23iv

s=n={s,nffecless

s,nyeless = (s,nifeless o s = nf o (nf, sfeless
and by 2.23iii

{n, sfeless = nf = so{nf, sjecless

s,nyeless = (s,nifeless o s = nf o (nl, sfeless
Together:

{s,njeless o s =noln,sfeless = {s,nfeless o s = nfoinf sjeless
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Re 2.24iii. Employing 2.24i and 2.24ii for a metatheoretical induction
gives

seB* = {s,nfelessos =non,sjeless

for all natural numbers n. QED

COROLLARY 2.25. Inferences according to the following schema are IDj -
derivable

{s,nfelessos=noln,sjeless, ' = C

seB*, I'=C

PROPOSITION 2.26. If m is a natural number, 0 a p-tuple of natural
numbers and € := ({1, *2§,0fe su A\ z ({2, xa) € less — ({1, 2§,05¢s), then
sequents according to the following schemata are IIDy -deducible.

(2.261) {7, m},0fes,m =0 = C[ii,m]

(2.2611) i, cf,0fes,{c, kTfeless = {{7,0),0)es 0 --- o {7, kf,0fes
(2.261i1)) {77, m},0fes,{m,cfeless, €[, m| =

Proof. Re 2.26i. Employ 2.23v:

{a,0)eless =

m = 0,{a, mfeless =

m = 0,{a, mfeless = ({7, af,0f¢s)

m=0={a,myeless — {{it,af,0f¢s)

{7, my,05es = ({7, mf,0fes m=0= Az ({z1,mfeless — ({7, z1},0] ¢s)

Wi, my,05es,m =0 = {7, m},0fesa A\ z1 ({z1,myeless — ({il, z1§,0f ¢s)
Re 2.26ii. Let A stand for c=0¢...0c =k, k > 1. Employ 2.23vi:
c=0,{7,cf,0fes = (1i7,07,0fes ¢ =0, {{i,cf,0yes = i1, 07f,0fes

c=00c=0,#,c),0fes = {{,0§,0fes0--- o {7, kJ,0fes

k — 1 analogous o-introductions left

{e,kfYeless = A A, {1, cf,0es = i1, 05,0Ves0--- o {7, kf,0 s
Wi, c,05es,lc, k'Y eless = (i1, 05,0fes o - -- o ({7, kF,0fes
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Re 2.26iii.
{7, my,0fes = ({7, my,0fes
{m, cjeless = {m,cjeless i, mj,05es, ({7, mf,05¢s =

{{7t,mJ,0¥es,{m, cfeless,{m, cfeless — {{it,mf,0f¢ s =
{7, mJ,07es,{m,cyeless, \ z ({z,cfeless — ({7, 25,05 ¢ s) =

({7, m), 0f s, (m, cfe less, ({71, m}, 0§ s, A z ({z, cf e less — ({1, 2§, 0) ¢s) =

{7, mJ,07es,{m,c)eless, €[n, m] = QED

DEFINITION 2.27.
min[s] ;= hry(yeB* 0@, y),0ieso A z({z, y)eless — (&, 2),0)¢s)) .

PROPOSITION 2.28. If the function g(X,y) is numeralwise represented in
LD, by the term g, and the function §(X) = py (§(X,y) =0) obtained
from g by p-recursion is total, then § is numeralwise represented in IDy,
by min[g].

Proof. If g(l,m) = 0 and f(&) = m, i.e., py (g(i,y) = 0) = m, then by
the assumption that g is numeralwise represented in IiDy by ¢, we have
that

(2.28i) = {{it,mf,0feg, and

(2.28ii) = Az ({7, m),zjeg — x=0)
(2.28iii) Wi, i),0eg = if foralli <m
are IlD;-deducible. In addition, 2.28iii yields:
(2.28iv) {{7,05,0fego--- o, k),0feg =

for k¥’ = m by successive o-introduction. (There is no i < m for m = 0.)
Now, what has to be shown for the numeralwise representability of
minimization is that

= {fi,myeminlg], and
= Az (7, zfemin[g) — . =m).
are IiDy-deducible. First of all, cutting 2.28i with 2.26i yields

m=0= Az ({z1,mfeless — {7, 25,05¢s), and
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cutting 2.26ii and 2.28iv gives way to the following deduction:
{7, cf,07eg,{c, kTfeless =
{e, kfeless = (i, cf,07¢ g
{e,mfeless,m = kf = ({7, c,05¢ g

m = kP = {c,mjeless — ({71, c},0f¢g
m=ki= A\z({z,mfeless — {7, 2},07¢9)

This yields
m=0= {fi,m)jeminlg], and
m = kT = {7, myeminlg]
in the following way (where I is m = 0, m = k/, resp.), employing 2.28i:
= {{i,mf,0feg I'= Az(z,mfcless — {1, 2},07¢9)
=meB* I'={id,mf,0iego\z({z,mjeless — ({7, 2},0)¢g)
I'=meB*o{{(ii,m},0fegu A\ z({z,mfeless — ({1, 25,05¢g))
I'= W, mieNdy(yeB* ol&,y),0fegu \ z({z,yfeless — (&, 25,07¢9))

Cutting 2.26ii and 2.28iv gives way to the following deduction, where €
is the nominal form ({7, *;J,0feg :

{n,cf,0¥eg,{c, kffeless = €[0] o - - o C[K] ¢0]o---oClk] =
{7, cf,07eg,{c, kTfeless =
meB* ({7, c},07eg, A\ z({z,cfeless — i, z},0)¢s),{c, ki e less =
meB*o{{it,cf,0fegu A\ z({z, cjeless — (1, 2},05¢ 5), {c, kifeless =

{1, cfe min[g], {c, k7€ less =

*

Since
i, cfemin|g],Tc,0)eless =

holds almost trivially as a consequence of
{e,07eless = (2.23v),

and m is either 0 or k’ for some natural number k, we have that
i, cfe min[g],{c, myeless =

is I'D,-deducible.
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The last preparational step is to provide
i, cfemin[g],{m, cfeless = .

which is readily obtained from 2.28ii and 2.26iii by means of a cut.
This now yields the second condition of numeralwise representability
of minimization in the following way:

(i, cfeminlgl,{c,mfeless = (i, cjemin|g],{m,cfeless =

c=Em=c=m {7, cfeminlg],{c,mfeless o {m,cjeless =

{7, cfeminlg],{c,mfeless o{m,cfelessoc=m=c=m

2.25
A, cfeminlg] = c=m

= (i, cfemin[g] = c=m

= ANz (i, zfeminlg] — z =m) . QED
THEOREM 2.29. The recursive functions are numeralwise representable in
L'D;.

Proof. As for result 45.46 in [15], p. 573, this is an immediate consequence
of the numeralwise representability of addition, multiplication, the iden-
tity functions, the characteristic function of equality, composition, and
minimization. QED

THEOREM 2.30. LiD, is essentially undecidable.

Proof. As for any consistent theory which allows numeralwise represent-
ability of all recursive functions.'® QED

REMARK 2.31. In view of the cut eliminability in IiD,, the foregoing two
results extend to LP).

3. Addition 130f. Fixed points and denotational devices

Definite description can only be established in a somewhat reduced form
in I'D,, the reason being a contraction that sneaks into the proof of
proposition 41.17 in [15], p. 470. Could this contraction possibly do harm?
In the present section I shall show that it actually does.

10 Cf. theorem 48.27 in [15], p. 612, for the paradigm of proof.
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The failure of extensionality may already be seen as an indication
that denotation is not quite as straightforward a business as was thought
in the early days of modern logic. The following application of the fixed
point property to establish the incompatibility of indefinite description
(e-operator) with IID; may well be seen as contributing to this view.

ProPOSITION 3.1. Dy U {Vz §[z] = Flex F[z]]} - L

Proof. Take the fixed point ¢ = ex (¢ # ) and consider the following
deduction:

= ¢ =cx (¢ #x)
Vo (¢ #2) = ¢ #cx (¢ # ) <f>7ﬁ€w(¢7ﬁ$)=>*
Va (¢ #x) =
ﬂ as on the left
p=11#0= :
b—1= Ve (6 #2) >
S oAl p#1>
= (3ED

REMARK 3.2. Notice that there is no contraction involved in this deduc-
tion. They are hiding in the e-initial sequent.'!

That the e-operator is not compatible with IID; may not surprise
people who find the e-operator outrageous anyway; so I shall show that
the least number operator doesn’t fare any better.

First of all: the formulation of the least number operator has to be
restricted to natural numbers. But in view of the fact that only 0 and
1 are employed in the proof above, this is little more than a formality.
The definition of the natural numbers provided in 41.60 on p. 487 of [15]
would actually do, since even without contraction it still yields 0 and 1
as natural numbers.

PRrOPOSITION 3.3. IID; U {\/"z §[z] = Fur F[z]]} F L.

11 This has been used as a convenient way of “proving” that abandoning contrac-
tion is no safeguard against the paradoxes.
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Proof. Take the fixed point ¢ = px (¢ # x) and consider the following
deduction:

= ¢ = px (¢ # x)
Vi (p#a)= 6£pe(6#£e) oFm@En) =
Vi (¢ # x) =
— 0eN % as on t:he left
$#0= i Vi (6 # @) =
¢p=11#0= leNog#1=
p=1= = 1eN 1eN,pA1=
> o #1 641> *
N

= QED

Still, someone who objects to the least number operator on the basis
of the non-finite character of the least number principle!? might not find
that too surprising. So I shall go one step further and show that even
without the least number principle one obtains a contradiction.

PROPOSITION 3.4.
LD, U {\V (3] o Ay (y <z — =3y])) = lpa Fla]} + L.

Proof. Take again the fixed point ¢ = px (¢ # x) and consider the fol-
lowing variation of the by now familiar deduction which yields \/Nz (¢ #
xoNy(y <z — (¢ #y)))) = instead of \/z (¢ # =) = and continue
as follows:

beN,b< 0= (0 #b) Va(p#zoNyly<z—-(6#v)) =
beN=b<0— ~(p#b) 0eNop#00 Ny(y<0— (¢ #y)))) =
= Nyy<0—-(p#y) 0eN,¢#0,Ny(y<0—(d#v))) =

= 0eN 0eN, ¢ #0 =

6#0=

»

L)

12 Cf. proposition 46.20 in [15] for the least number principle in first order arith-
metic. As regards the non-finite character of the least number principle, cf. Bernays in
quotation 80.6 in the [15].
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This result can now be employed to yield = ¢ # 1 as usual, but also to
prove Ny (y <1 — —(¢ #v)))) as follows:

640
beN,b<1=b=0 b=0,6+b=
beN,b< 1,6 #b =
beN,b<1= ¢ #b
beN=b<1—¢#£b

= Nyly<1l—-(p#y))

Continue as above, only with 1 instead of 0:
Viz (9 #£zo Ny(y <z — (6 #y)) =
1eNogp#1aNy(y <1— (¢ #y) =
= Ny(y<l—-(p#y) 1eN, ¢ £ L Ny(y<1l— (¢ #y)))) =
=1eN 1leN,p #1 =

&

L)

»
p#1= QED
This result can be extended to the t-operator with the usual initial
sequent. The point is that the least number operator is just a special form
of definite description and the least number principle and the only natural
numbers actually employed are 0 and 1.

CONVENTION 3.5.
€[s] == s€{0,1}03[s]o Ay (ye{0,1f oy < s = ~Fy]) .

PROPOSITION 3.6. If €[s] is according to convention 3.5, then sequents
according to the following schemata are IiD, -deducible.

(3.61) a=0,b=0=a=0b

(3.6i1) a=1,b=1=a=0

(3.6iii) a=0,b=1,5a, ANy (ye{0,1foy <b— =F[y]) = a=0>
(3.6iv) a=1b0=0,F0b], ANy (ye{0,1foy<a— —-F[y]) =>a=0>
(3.6v) Cla],€b] = a=0b

(3.6vi) Va €lz] = Va (€z] A Ay (Cly]l — = =y))

(3.6vii) Vz €lz] = Ve Czlo Az Ay (Clx]olly] -z =y)
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Proof. Re 3.6i and ii. Trivial.

Re 3.6iii
=0e{0,1} =0<1 §lal = 3la]
= 0e{0,1J00 < 1 Slal, +3la] =
a=0,b=1=0ae{0,1}oa<b Sla], ~§la] = a=b

a=0,b=1,Fa],ae{0,1fna <b— —Fla] = a=b

a=0,b=1,8la], Ay (ye{0,1foy <b— =3ly]) = a="b
Re 3.6iv. As for 3.6iii; left to the reader.
Re 3.6v. This is straightforward consequence of 3.6i-3.6iv.
Re 3.6vi. Employ 3.6v:

Cla],€b] = a=b
Cla) = €] —a=b
€la] = €la] Cla] = Ay (€y] = a=1y)
Ca] = Cla] ANy (€y] ma=y
Cla] = Va (Cfz] A Ay (€ly] -z =y))

Vz €a] = Va (€fz] ANy (€y] — = = y))
Re 3.6vii. Straightforward in view of 3.6v; left to the reader. QED

THEOREM 3.7.
(3.7) LDy U{Va @l ANy @l — 2 =) = Sl Slall} F L
(3.71) LDy U{VzF[z], A 21 A 22 (F[21] 0F[22) — 21 = 22)

= FlxFz]]} F L
Proof. The point is, of course, to find an appropriate §. That’s what

convention 3.5 has been designed for. In view of 3.6vi and 3.6vii, both,
3.71 and 3.7ii, essentially reduce to a form of 3.1, only with ¢ instead of e:

Va §lz] = Slux S]],

where § := %1 {0,109 # x10 Ay (ye{0,1foy < x; — —(¢ # *;)) with
¢ being the fixed point satisfying ¢ = xF[z]. Since §F[txF[z]] = ¢ # txF[z]
is straightforward, one obtains

Vo (xe{0,1Fop # 2o Ay (ye{0,1foy <z — =(¢ # z)) = ¢ # 1z §Fx].
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The further procedure is essentially as for 3.4; the fixed point property
provides ¢ # wx Flx] = and with some inversions of \/ and o in the
antecedent this gives:

06{0) 1Fa¢) # Oa/\y(yG{Oa IFDy <0— _'((b # O)) = .
As before, one gets ¢ # 0 = and thereby ¢ # 1 = which, in turn, yields
= Ay (ye{0,1Foy <1 — (¢ #1))
as in the proof of 3.4; together with = 10,1} and
10,1}, ¢ # L Ay (ye{0,1foy <1 — (¢ # 1)) =

one obtains ¢ # 1 = by cut, hence a contradiction. QED

4. Addition 135g: An interpretation of A in LiD%

The availability of a notion of weak implication accounts for the pos-
sibility of expressing an arbitrary number of simple substitutions, i.e.,
of substitutions achieved on the basis of s = ¢. This, in turn, makes it
possibile to interpret A8 in I}D%.

DEFINITIONS 4.1. (1) sét:= Ay(s=y D yet).

(2) Nay [,y :=rz Awr Ay (2 = (21,9) D w1 eha §lz, yl) -

(3) LD-translation of A-terms and wifs.

Ala] iff 2 is not bound in 2, and a is the
first in the list of free variables that

(3.1) 2e]*" ) .
oes not occur in 2A
Alx] otherwise
(3.2) [ha. A|"P = Nay (y = [|A|"P)
(3.3) | AB|"P =he Ay (| B|*P,y) e[| AII"P — zey)
(34) [|[A=B|"" =[4"" =|B|""

where y does not occur in A in clause (3.2), and neither x nor y occurs
in AB in clause (3.3).

CONVENTION 4.2. For the sake of simplicity, I shall write || A| instead of
| A||P for the remainder of this section.
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ExAMPLES 4.3. The following examples are meant to give an idea of how
A-terms look under the LD-translation.

(©) [Paeal = 2o Az Ay (= = (@1,9) D 21Xy = 2)).
2) [ay.z| =iz Azer Aya (210 = (21,91) D
r1eMyr = Az (A z2 Ay2 (22 = (22,y2) D w2eM(y2 = 2)))).
(3) |hay.zyy|| = Naz (21 = Nyza (22 =
Ay Ay (Y, yn) Ehaa Az ((y, y2) €2 — @2€12)) — T1€01)) -

PROPOSITION 4.4. Inferences according to the following schemata are
LD, -derivable.

r
-, ~ 5l
I' = Az 5[z
if ||| does not occur in the lower sequent.
All, I =C
(4.4 SllIAll], I =
Nz 5§z, = C

Proof. Re 4.4i. This is a straightforward consequence of clause (3.1) of

definition 4.1.

Re 4.4ii. This is obvious in view of the fact that ||A| is a term in the

language of IiD;.. QED

PROPOSITION 4.5. If the bound variable x does not occur in §, then
1Bl ehe Sz, [[Asll;- - [ Anll] < SIBI, [Avle/Blll, - -, | A2/ Bl -

is I'Dy -deducible.

Proof. Employ an induction on the sum of the lengths of the A;, where
ie{l,...,n}. To save space, I confine myself to n = 1. Distinguish cases
according to the clauses of definition 42.11 in [15], p. 502.

1. A=z, i.e., what has to be shown is

LDJ - || Bl ehx §x, |2]] < S B, «f=/B]l] -
By definition 4.1 (3.1) and 42.11 (1) in [15], this amounts to showing
LD} F || Bl|exz §[z, 2] < I BIl. 1B]],

which is a straightforward application of A-abstraction.
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2. A =y, where z # y, i.e., what has to be shown is
LD} - || Bl exa Flz, |yl] < Sl Bl lyl=/Bl|] -
By definition 4.1 (3.1) and 42.11 (2) in [15], this amounts to showing
LD} + || Bl exz Fla, |yl] < S BI llyll]

which is a straightforward application of A-abstraction.
3. A= (C1C%), i.e., what has to be shown is

LD} - ||Bl|ehz Flz, [ (C1C2)|] < Sl BIl, [(C1C2) [/ B[] -
By definition 42.11 (3) in [15], this amounts to showing
LD} + ||Bl|exz Flz, [ (C1Ca)|] < S| B, [|(Ci[x/BICal/ BT},
which, by definition 4.1 (3.3), amounts to showing
LD} - || Bllehz §z, 2y Ayi ({[|Call, yn) ECLll — z1eyn)] &
SUBIL A Ay ((IC2[z/ Bl ya) €l|Ca[z/Bll) — z1€m)]

which, in turn, follows by the induction hypothesis.
4. A= (Az.C). What has to be shown is

LD} - || Bl era §[z, |z O] & S B, |2 C)[z/B]]] -
By definition 42.11 (4), this amounts to showing
LD} k|| B||exa z, | (hz. O[] & Sl Bl |0z O]

which is an immediate consequence of A-abstraction.
5. A= (\y.C) and z # y. What has to be shown is

LD} F ||Bllera §z, | O O] < S B, | - C)l/B]|l] -

Distinguish cases according to definition 42.11 in [15], clauses (5) and (6).
51.y ¢ FV(B) or y ¢ FV(C). By definition 42.11 (5) in [15], what has
to be shown reduces to

LD} F || Bllexz §z, | (- O)I) & S B, Iny - Cla/ Bl -
which, by definition 4.1 (3.2) amounts to showing
LD} - [|Bl| ehz §lz, Nyz (= = |CI)] & Sl B, Nyz (= = | Cla/B]I)],

which, in turn, follows by the inductions hypothesis.
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5.2. y € FV(B) and y € FV(C). By definition 42.11 (6), what has to be
shown reduces to

UD{ & [|Bl|exa 3z, |0y O) ] < F(I B, =-Cly/2][z/B]||]
which, by definition 4.1 (3.4) can be reduced to
LD} b ||B|ledz §[z, Xyz (2 =||C|)] < I BIl, X 21 (1 = | Cly/ =[x/ B]||)]

which, in turn, follows by the inductions hypothesis. QED

PROPOSITION 4.6. Inferences according to the following schemata are
LD, -derivable.

(B2l y) €l Azll, I" = (|| Bull, y) €[ Aul

(4.61)
I' = ||A1 By = || A2Bs|

where y is a free variable in the upper sequent, which does not occur in
the lower sequent.

i r'=|B| = |4l
(4.6i1) ~ _
(Al syet, I = (||B]|,s) &t
(4.6iii) I = || Afe/z]]| = || Bla/@]|

I' = |\z. Al = || . B||
where x1 ¢ FV(A) and 1 ¢ FV(B).

Proof. Re 4.6i.
(I Ball, b) €[] Az|l, I" = (|| B |, b) €| A | acb= acb
(I Bull,b) €[ As]l — acb, (|| Bal|, b) E[| Asl, I' = acb
(I Bu]l, 0) €[|As]| — aeb, I" = (|| Ba||, b) €| Az|| — acb
Ay (Bl y) ElJArll — acy), I" = Ay (|| B2, y) E[| Aa|| — acy)
acheN\y((||Bill,y) el Arl| —wey), ' = achz Ay (| Boll, y) €| Azl — wey)
I' = acl|A1By]| — ac||A2Bs|
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Analogously for I' = a€l||A2Bz|| — a€||A1Bi||. Finish in a familiar way
as follows:
I'= ae||AlBl|| — aEHAQBQH I'= ae||Ang|| — aEHAlBlH

I' = ac||A1 By < ael|AxBs||

I'> Ne(@e|ABil  vel[AsBa)

Re 4.6ii. This is the point where the strength of Z-inferences is needed,
and that in the inference marked by + which is according to 135.20vii in
[15], p. 1847.

I'=||B][ = |[A]
= (|Bl,s) = (Il )
(IBIl,s) =b,I" = (||A]l,s) = b bet = bet

(IA|l,8) = b > bet, I = (||B]|,s) = b > bet
ANy {[lAll,s) =y Dyet), "= (||B|,s) = b D bet
Ny {llAll,s) =y Dyet), I'= Ay ({([|Bl,s) =y Dyet)
(I1A]l,s)et, I" = (|| B|, s) €t

Re 4.6iii.
I'= ||Alz/x]|| = || Blz/z]|
b= [|Alz/zi]ll, I" = b = ||Blz/z]]|
c=(llzall,b) = c=(lzall,0) llzrllerz (b=[lAl]), "= [|z1]|erz (b= BI])
¢ = ([lz1],0) D |lz1llerz (b = |All) = ¢ = ([lz1]l,b) D ||lz:1]|edx (b = || B))
ANz Ny(c=(z1,y) D xrerx(y=[Al)) = c¢= (lz1l],0) D [lz1 | erz (b= || B)
celpz. Al I' = ¢ = (|lz1]],b) O ||lz1]|edx (b = | B)
celpz  All, I'= Az Ay(c = (z1,y) D zrehe (y = [|B))
celhx  Al,I" = ce|rz.B||

I' = ce|hz. Al — ce|iz. B||
Continue as for 4.6i. QED

PROPOSITION 4.7. If y1 ¢ FV(B) and no variable bound in A is free in
B, then there exists a natural number n such that

LD; = nf||B]| = [ly:l] = [|A[z/B]|| = || Alz/y:]]] -
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Proof by induction on the length of A. Distinguish cases according to
the form of A. With the exception of the case that A = (C1C2), there is
hardly any change to the proof of proposition 4.7 in the TOOLS, so I shall
only treat that case.

A = (C1C). As an immediate consequence of the induction hypothesis
and proposition 4.6ii there is a natural number n; such that

. [||Bll = lly:[l] = [|Celz/Bll| = [|Ca[z/y1]|
(IC2[z/yalll, 0) ElCil/mn]ll, na (| BIl = [ly2[l] = ([|C2[z/ B, b) € [[C1[z/ya]l

is IIDZ-deducible. By the induction hypothesis there is also a natural
number ny such that

LDy + nof| Bl = [nl] = [Cile/ni]ll = |Cil/B]|l -

This makes it possible to continue as follows, employing 4.6i:
(IC2[z/ya]ll, b ElC [/ ]Il 1 + ma[[| Bl = [lya[] = ([ C2[z/Blll, b) & [|Cr[=/ Bl
0 + n2f|| Bl = [ly1[l] = [Cr[z/B]Caz/Bl|| = [|Cilz/y1]Ca [z /]|l

By definition 42.11 (3) in [15], this is
ny +no[|| Bl = [[sall] = [[(C1C2)[z/ Bl = [(C1Ca) [z /]l qEp

PROPOSITION 4.8. Sequents according to the following schemata are
LiDZ-deducible.

(4.81) (1Bl b) lIre. Al = b = || Alz/B|
(4.8ii) s = [|Alz/ Bl = (Bl s) € |[rz. Al
(4.8iii) = (1Bl | Alz/Bl[) €[rz - A

Proof. Re 4.8i.
b= ||A[z/B]|| = b = [|A[z/B]|

= (IBIl,b) = {IIBIl,b)  [[Bllehz (b= [|Al}) = b= ||Alz/B]|
(IBll;6) = (IIBll;b) > [IBllerz (b = ||A]l) = b = [|Alz/Bl]]|
Azt Ay({IBll;b) = (z1,y) D zrehz (y = [|Al])) = b= || Alz/B]]|

= (IBI.b) = (IBI.b)  (IBl,b)eNay(y=IAl)) = b= Alz/Bl|
(I1B11,6) = (IBIl,b) > (Il b) Ny (y = |Al})) = b = || Al/B]|
Avi (1 = (IBI,b) > yreNay (y = | Al)) = b= ||Alz/Bl|
(1B, b) Erz Azi Ay (2= (z1,y) Dxr ez (y = [|A]])) = b= || Alz/B]|
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Re 4.8ii. Employ 4.7, with z satisfying the necessary requirements.
nf[| B|| = ||z[[] = [[Alz/B]|| = [|Alz/z]|

|| B|| = [|z[l], s = | Alz/B]|| = s = || Alz/]]|
|| Bl = [[zlll;s = b,s = [|A[z/B]|| = b = [|Alz/=]]|
(|| Bl = ||zll], s = b,s = [[Alz/Bll| = ||z[|edx (b= [|A])
n[(|Bl;s) = (llz[l, 0)], s = b, s = [[Alz/B]|| = ||z[|edz (b = [|All)
n[(I1Bll;s) = (llIl,0)], (I Bll, s) = {[zll,b), s = [|Alz/Bl|| = ||z[|e:z (b = || Al])
n+1[(|[Bll;s) = a],n + 1a = ([|z[|,b)], s = [|Alz/Bl|| = [|2[ e Az (b = [|A]])
0+ 1[(IBIl;s) = al, s = |[Alz/B]|l = a = (|lz,b) D ||z]|erz (b = [ Al})
n+1[{|[Bl,s) = a],s = [|Alz/Bll| = Az Ay (a = (z1,y) D> z1edz (y = [|Al])
n+1[(|[Bl,s) = al, s = || Alz/Bl|| = aeXzy (y = | A])
s = [|Alz/Blll = a = (|Bll,s) > aeXzy (y = | A])
s = || Alz/B]ll = Avi (yr = (IBll,s) D yreNay (y = [|A]))

s = ||Alz/B]ll = {IBl,s) ez Az1 Ay (z = (z1,y) D z1 ez (y = || A]]))
Re 4.8iii. This is an immediate consequence of 4.8ii. QED

REMARK 4.9. 4.6iii, 4.8i and 4.8ii above are the points where the notion

of weak implication is really needed, more specifically, a notion of weak

implication that satisfies the following schemata

A ..., A I'=B A I'=B q = A B, I'=C

, , an .
I'=ADB BoC, I'=AD>C ADB,I'=C

This concludes the listing of the relevant tools. I now begin with the

translation of a-conversion.

PROPOSITION 4.10. If y ¢ FV(A), then
LD, F = [hz.A=\y.Alz/y]||.
Proof. What has to be shown is
LD} - = |ha. Al = |y Alz/y]]l -
By proposition 4.6, it is sufficient to show
LD} = ||Alz/z1]|| = | Ale/ylly/zill
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which is obvious in view of proposition 42.14i in [15], p. 502, establish-
ing that A[z/z1] and Alz/y][y/x1] are actually identical in the sense of
definition 42.11 in [15],if y ¢ FV(A). QED

I continue with the translation of 3-conversion.

PROPOSITION 4.11. Sequents according to the following schematla are
LiD%—deducible.

(4.111) se||(hx.A)B|| = se||Alz/B]||
(4.11ii) se||Alx/B]|| = se||(hz. A)B]|
(4.11iii) = ||(\x. A)B = Alz/B]||

Proof. Re 4.11i. Employ 4.8iii.
= ([|B, [ Alz/B]||) € |[hz. Al se||Alz/Bl|| = se||Alz/B]||
(IBIl, | Alz/Bll) é[x. Al — sel|A[z/Bl|| = se|| Alz/B]||
Ay (B, y) €. Al — sey) = se||A[z/B]||
sehry Ay (1Bl y) él[hz. Al — z1ey) = sel|Alz/B]|
Re 4.11ii.

sellAlz/Bl|| = sel|Alz/Bl|
sellAlz/Blll,b = [Ale/Bl|| = seb
sellAlz/ Bl {||BIl, b) €|pz. All) = seb
sel|Alz/B]| = (||B|,b) €[rz. Al — seb
sellAlz/ Bl = Ay ((IBIl, y) Elhz. Al = sey)
sellAlz/Blll = seher Ay ({(|1Bl,y) €hw. Al — 21 €y)

Re 4.11iii. This is a straightforward consequence of 4.11i and ii.
Re 4.11iv. This is a straightforward consequence of 4.11iii in view of the
definition 4.1 (3.4). QED

PROPOSITION 4.12. Inferences according to the following schemata are
LD, -derivable.

= [|A= B

(4.12i) A —
= [|B = A
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w1z =l4=Bl =IB=C|
= ||1B=C|
= ||A=B
(4.12iii) M
= ||CA=CB|

Proof. Re 4.12i and 4.12ii. These are immediate consequences of the way
= is defined in I!D,.

Re 4.12iii. This is a consequence of the inclusive character built into the
definition of €.

= Al =Bl .
(Bl welcl = dial.velel
= |CA| = [lCB]| QED

THEOREM 4.13. If A3+ A, then ID? I = || A].

Proof. 4.12i-iii are the translations of (¢), (1) and (), respectively. QED

THEOREM 4.14. Not every equation is \3-deducible.

Proof. This is an immediate consequence of the foregoing theorem 4.13
and the fact that ||z = y||, i.e., a = b, ist not an DZ-deducible wff. QED

Discussion. In view of the smooth interpretation of logic in illative
combinatory logic provided in [11],'® the question will arise why is the
translation provided here rather awkward in comparison? My answer is
to draw attention to the notion of equality. The notion of equality in IiDj,
(and, of course, ID%) is provided by implication, conjunction, general-
ization (i.e., illative notions) and elementhood in the usual way:

s=t:=ANz((xres - zet) A(zet — xes)).

This, however, does not agree too well with the introduction of = as
a primitive relation in A-calculus and combinatory logic. Consider the

13 See, in particular, p. 587.
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following situation:
A—B B— A
A=B )
cA cA—cB
Eq
CB
which has already been shown to be incompatible in remark 42.64 (2) in
[15], p. 517.
This doesn’t seem to be too surprising if one considers the definition

of B € Ain [11], p. 587, as AB. The p-inference together with the Fg-
inference then reads:

AeC A=1B

BecC
which just displays the characteristic feature of extensionality from a set
theoretical perspective.

In other words, given the reading of equality in D%, (1) does actu-
ally provide a form of weak extensionality as considered in [11], p. 594,
which has been shown to be incompatible with a formalized theory equiv-
alent to BCK)\3 in U. [15], p. 517.

This, however, is compensated in the awkward definition of AB in the
LD-translation as Az Ay ((B,y) A — zey) by the somewhat “inclusive”
notion €.

Differently put: the system BC K3 from [11] becomes trivial, if some-
thing like

A— B B— A

A=B
is added as a basic rule of deduction (i.e., the premisses not depending
on open assumptions).

5. Addition 137f. An approach to extending LiD% to acco-
modate nested double induction and recursion

This addition is still more of a suggestion than a fully worked out ap-
proach. The reason that it is included here is that it gives the idea of how
I want to extend the approach begun with my Z-inferences to gain more
deductive strength in systems of higher order logic without contraction.
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5a. Introduction. Primitive recursion (or l-recursion) is available

in I}D% (in the sense that functions defined by primitive recursion from
total functions can be explicitly defined and proven to be total), as shown
in [16], but not so k-recursion for k£ > 1. The latter is readily concluded
from a simple ordinal observation: a consistency proof for 2-recursion
requires an induction up to w®”, while that of I}D% can be shown by an
induction up to w*. On the other hand, as I suggested at the end of [16],
given a certain reinforced necessity operator obeying the rules

O"A,I' = C O"A=C

_ and I

QA I =C OA = Oc
there is an easy way to overcome the difficulties. The present paper is
dedicated to a way of introducing such a reinforced necessity operator [
without adding any new primitive symbols.!*

REMARK 5.1. Regarding the reduction step for the above rules: if the last
part of a deduction has the form

O"B= A O"A,I' = C
OB — A OAT = C
*,
OB, I'=C

then a deduction can be constructed as follow:

O0"B = A -
0" B = "A AT = C
"B T = C
OB, I = C

This may look pretty innocent. But since it is sufficient to provide 2-
recursion, it will come no cheaper than by an induction up to w*”.

L)

14 No relief is to be expected from the introduction of function variables as pro-
moted in, e.g., [9] and [8] for the formulation of k-recursion for k > 1, simply because
the problem in the present approach is not the formulation of an appropriate term,
but the nested double induction required in the proof that it satisfies the criterion of
a function: uniqueness of the value; and that problem prevails.
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What I need is a way of quantifying, as it were, over necessity oper-
ators, and that in a way that allows a form of induction similar to that
provided by IT" in [14]. This is what I am going to provide now.

My approach to providing sufficient deductive strength for proving
2-recursion is based heavily on [14] and [16] and is a further extension of
the system LIDZ presented in [14].

5b. Wy and Z,. I begin by introducing a new kind of successor
notion.

DEFINITIONS 5.2. (1) s7 := hxO(zes) (“necessor”, a kind of successor
with regard to the necessity operator, a nec[essity-succ|essor).
(2) The set W5 is defined inductively as follows:

(2.1) I is an element of ¥y ;
(2.1) If t is an element Wy, then so is 7.

(3) If n is a natural number, then the corresponding ¥o-element is defined
inductively as follows:

(3.1) I is the corresponding Wo-element to 0;
(3.2) If 72 is the corresponding Wo-element to n, then 727 is the corre-
sponding Ps-element to n'.

EXAMPLE 5.3. I =y O(z1 ek O(z0 € 1)) = ke O0(ze ).

CONVENTION 5.4. I shall use m and n as syntactic symbols for elements
of Wy, possibly with index numbers.

REMARK 5.5. Wy is the set {I, 17, 177 ...}, where

F=)z0O(x=V),
I =)z 00(z = V),

Note, however, that this is equality, not identity! What is aimed at is, of
course, this: [A/n] < O"A.

PROPOSITION 5.6. If s € Wy, then there exists a natural number n such
that s is the corresponding element of n in W.

Proof. As for the case of ¥ in proposition 131.9 in [15], p. 1789, this is an
immediate consequence of the definition of corresponding element. QED
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PROPOSITION 5.7. Sequents according to the following schemata are I}D%-
deducible.

(5.71)  [A/s"] < O[A/s]
(5.7i1) O([A/s]o[B/s] — [AuB/s]) = [A/s?|u[B/s?] — [AuB/s7]
(5.71i1)  [A/sT] = [A/s]
(5.7iv)  [A/I7] < DA
Proof. Re 5.7i. Immediate consequence of the abstraction rules.
Re 5.7ii.
[A/s|o[B/s] — [AnB/s],[A/s],[B/s| = [An B/s]
O([A/s]o[B/s] — [AoB/s]),0[A/s],0[B/s] = O[Ao B/s]
O([A/s]o[B/s] — [Aa B/s)),[A/s"],[B/s"]| = [Ac B/s"]
O([A/s|o[B/s| — [AoB/s]),[A/s" 0 [B/s"] = [AuB/s")
O([A/s]o[B/s] — [AuB/s]) = [A/s")a[B/s?] — [AcB/s7]
Re 5.7iii.

ANes = [A/s]
O(\Aes) = [A/s]
[A/s"] = [A/s]
Re 5.7iv. This is a straightforward consequence of 5.7i and 131.15i and ii
in [15], p. 1792. QED

As for the case of ¥, the problem consists in capturing the informal
notion ¥y on the formal level, and that in a way which provides for a
form of induction. As in the case of Z, the point is to find an application
of self-reference (fixed-point construction) which creates, as it were, its
own “successor”, this time with regard to the necessity operator, i.e., its
own necessor. This is what the following definition aims at.

DEFINITION 5.8. ¥,[A] .= zx0(xexoAd)erxO(zexo A).

The next proposition lists a number of properties of %,, somewhat
paralleling proposition 132.5 in [15], p. 1804, concerning the case of 4.
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PROPOSITION 5.9. Sequents according to the following schemata are LiD%-
deducible.

(5.91) ¥2[A4] < O(7,[4] 0 A)

(5.9ii) 5,04] = OA

(5.9iii) 2,[4] = A

(5.9iv) 5,[4] = O"A

(5.9v) 4] = 0%,[A]

(5.9vi) FalA] = 09, [4]

(5.9vii) %,[4] = 0¥,]4] 0 0A
(5.9vii))  ¥,[AAB] = ¥,[A A BloO"A
(5.9ix) 5,JAAB] = 5,JAA BloO"B

Proof. Re 5.9i. Straightforward consequence of the abstraction rules.
Re 5.9ii.

A=A
¥5[Al, A= A
O(¥,[4]0A) = 0A
¥5[A] = 0OA

Re 5.9iii. Immediate consequence of 5.9ii.
Re 5.9iv. Repeat 5.9i.
Re 5.9v.

Y2[A] = ¥2[A]
Y2[A], A = ¥,[A]
Ya2[Alo A = ,[A]

O(9,[A] 0 A) = 0%, [A]
YolA] = 0¥, [A]

Re 5.9vi. Employ an induction on n, approaching along the line of 5.9v.



ADDITIONS AND CORRECTIONS TO DIAGONAL METHOD ... 141

Re 5.9vii. Employ 5.9vi and 5.9ii:
¥5[4] = 0A
O9,[A4] = DO¥,[4] O9,[A] = DA
O9,[A], 0%, [A] = O, [A] o OA
¥o[A] = OO¥,[A] D09, [A] = O¥,[A] o DA
¥2[A] = O, [A] o 0A

Re 5.9viii and 5.9ix. These are straightforward consequences of the fore-
going results. QED

»

COROLLARY 5.10. Inferences according to the following schemata are
LiD%—dem'vable.

AT'=C
(5.101) —
5/2[‘4];[’ =C
OA,I'=C
(5.10ii) —
5/2[‘4];[’ =C
O"A, T = C
(5.10iii) S —
’\72[14])11 = C
Y,JAAB],0"A, T = C
(5.10iv) TalAN B
5,JAANB|,T = C
$,[AA B, OB, " = C
(5.10v) Vsl ]
5,JANB|,T = C
O3, [A], T = C
(5.10vi) Vol

5/2[‘4];[’ =C

Next comes the definition of a term that is meant to do for the neces-

sor 7 what Z did for the verisection 1.1

DEFINITION 5.11. [
Zo :=hx Ny (Folley ANz (O(zey) — 2Tey)] — zey).

15 As regards the term “verisection”, cf. definition 131.5 on p. 1788 of [15].
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REMARK 5.12. This definition of Z5 is designed with an eye to a possible
consistency proof somewhat along similar lines as that sketched in §133
of [15] for the case of LDZ. At first sight, it may look as if the approach
from [14] could be easily adapted from ! to 7 This however, runs into
trouble at the following point: while

= A

AMes = Nes!
is perfectly LiD;-deducible, the following isn’t IIDZ-deducible:

= A
AMes = O(\Aes)

A similar consideration applies to the employment of a fixed-point a la
(18], ie., Zo = haNy(Iecyo\z(zeZy — 2Tcy) — xey). It is with
regard to this problem that the necessity operator is introduced in front
of the “induction hypothesis”, i.e., the sub-formula (z€y) in Zs.

PROPOSITION 5.13. Sequents according to the following schematla are
I}D%-deducible‘

(5.131) = IeZy

(5.13ii) O(seZo) = sTeZy

Proof. Re 5.13i. Employ 5.9iii:

5,lIeb] = Ieb
ST eb], ¥\ z (O(zeb) — z7cb)] = Icb
Fo[Teb] 0¥, A\ 2 (O(zeb) — 27eb)] = Teb
= Fo[Teblo¥y[A 2z (O(zeb) — 27eb)] — Teb
= Ay (Fall eyl 0¥,[A 2 Ozey) — 2¥ey)] — Iey)

= Iehe Ny (Fall ey 052\ 2 (B(zey) — ley)] — zey)
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Re 5.13ii. Let 3ety := o[l 1 AN 2z (O(zex) — 27ex1)]:

3ety[b] = 3ets[b) seb= seb
3ety[b] — seb, Jety[b] = seb
Ny (3etzly] — sey), etz[b] = seb
seiz Ay (Betay] — sey), 3eta[b] = seb

O(sehx Ay (3eta[y] — sey)), O3etz[b] = O(seb) .
O(serx Ay (3eta[y] — sey)), Jeta[b] = O(sebd) o sTeb = s'eb

O(seZo), 3ety[b], O(seb) — sleb = sTeb

O(seZs), 3ety[b], A 2 (O(z€b) — 27eb) = sTeb
O(seZs), 3ety[b] = s7eb
O(seZy) = 3ety]b] — s'eb
D(seZ2) = Ay (3etaly] — s7ey)
O(seZsy) = sTedz Ny (3eta]y] — zey) QED

5.10v

REMARK 5.14. Notice that LiD% isindeed required in the above deduction
of 5.13ii.

5c. Zo-inferences and II5. As in the case of Z, 1 shall next proceed
to defining terms which provide for some form of proto-induction, in the
present case a nested double one.

DEFINITIONS 5.15. (1) An inference according to the following schema is
called a Zs-inference:

I' = seZs = A
I = \Aes

(2) The formalized theory LiD%2 is defined as LIDZ plus all Zs-inferences.



144 UWE PETERSEN

Next comes the definition of IT5. In what follows, I shall commonly
write [A/s] for NAes, as I already did in [14].

DEFINITIONS 5.16. (1) Piy[s, t] := [Tet/s] A N\ z[D(zet) — 2Tet/s].
(2) I3 := hx (O(xeZ2) o Ay (Piy[z,y] D xey)).

PROPOSITION 5.17. Inferences according to the following schemata are
I}sz—derivable.

5.17) =31 OFla) = §la]
selly = 3[s]
(5.17ii) - =5
selly, [A/s] = [B/s]
(5.17iii) - A=B
selly, 0[A/s] = [B/s]
(5.17iv) =5

selly, [I'/s] = [B/s]

Proof. Re 5.17i. Let & := \x §[z]:

05a] = §la”)
O(acha §lz]) = a’era §[z]
= ] = O(aeiz §[z]) Hazle)\xﬁ[m]
= Ieha §lz] seZy = [O(act) — alet/s]

seZy = [Iehx F[x]/s] seZ2:>/\z[|:|(zef)H22[ef/s] 5ls] = Fs]
seZo = [Te&/s| A N\z[O(ze€) — 2Te€/s] seiz §lz] = Fs]
O(seZo), [Tef/s) ANz [O(ze€) = 27e€/s] D sef = 5]
D(seZs), Ay ([Tey/s| AN\ z[O(zey) — 27ey/s] O sey) = Fs]
O(seZz)o Ay ([Tey/s] ANz [D(zet) — 2ey/s] D sey) = §ls]
seiz (O (seZQ)D/\y([Iey/s]/\/\z[[l(zet)—>zzley/s]Dsey))é%’[s]
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Re 5.17ii. Similar to 134.10ii in [15], p. 1830:

[A/d] = [A/c] [B/d = [B/d]
[A/c] = [B/d],[A/d] = [B/d]
A= B O([A/c] — [B/c]),O[A/c] = O([B/<])
[A/T) = [B/T] O([A/c] — [B/d]), [A/c") = [B/cT]
= [A/I) - [B/I] D([A/c] — [B/d)) = [A/c"] — [B/c"] .
selgfg,[A/s]:>[B/s] '
Re 5.17iii.
O[A/a] = O[A/a]  [B/a] = [B/a]
O[A/a] — [B/a),0[A/a] = [B/a]
OJA/I]=0A OA= B O[A/a] — [B/a],[A/d"] = [B/d]
O[A/I =B * O@[A/a] — [B/a],D[A/aQI] = 0O[B/a]
O[A/1) = [B/1] 0(0[A/a] — [B/a),0[A/a”] = [B/a”]
= O[A/I — [B/I] 0(0[A/a] — [B/a]) = O[A/a’] — [B/a"] o

selly, 0[A/s] = [B/s]

Re 5.17iv. This is just a generalization of 5.17ii by taking the finite box-
conjunction of the wifs of I'. Left to the reader. QED

REMARK 5.18. There is something bordering on triviality in the “induc-
tion steps” of the proofs of 5.17ii—5.17iv, which is essentially due to the
LD, -deducibility of the sequent O(AAca) = hAca?:

O(AAeca) = O\Aeca)
OO0 Aeca) = Aea’

I suggest that this be seen in the context of the difference between a
complete induction and a transinite induction. Every ordinal below w
can actually be reached by starting from 0 and adding 1, whereas with
a transfinite ordinal one can only say that 0 can be reached by every
descending chain.
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PROPOSITION 5.19. Sequents according to the following schematla are
I}D%-deducible‘

(5.19i) selly = O(seZy)

(5.19ii) selly = s7eZy

(5.19ii1) selly, [A/s] = A

(5.19iv) = el

(5.19v) selly, Piy[s™ 1] = Piys, t7]
(5.19vi) selly, O(set), Piy[sT 1] = sTet
(5.19vii) [O(selly)]? = sTell;
(5.19viii) selly = O(selly)

(5.19ix) selly = sellynselly
(5.19x) selly = sTell;

Proof. Re 5.19i. Fairly immediate consequence of the definition; left to
the reader.

Re 5.19ii. This is a straightforward consequence of 5.13ii and 5.19i.

Re 5.19iii.

OM\Aec) = 0O[A/c]

[A/cT) = O[A/d] OA= A
A= A O[A/c] — OA,[A/cT = A
[A/I] = A O([A/c — A),[4/cT] = A
= [A/]]— A O([A/c] — A) = [A/cT] — A

5.17i.

selly, [A)s] = A

Re 5.19iv. Obvious.
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Re 5.19v. Inferences according to 5.17iii are marked by x*:

O(cet) = O(cet)

D(cet)icetq et = et

O(cet) — Fet,cet? = et

O(cet) — ¢ et) D(cet ) = D(c €t)

O((cet) — Fet), O(cet?) = Tet?

OO(cet) — cqet) = D(cet‘) — Aef!

O(Iet) = O(I t) selly, O0(cet) — cTet/s] = [O(cet?) — Tet?/s] "
O(et) = Tef selly, [O(cet) — cTet/sT] = [D(ceth) — Tet?/s]
selly, O et/s] = [Tetl/s] " sells, Az[d(zet) — 2Tet/s?] = [O(cet?) — Tetl/s]
selly, [Tet/sT] = [Ietl/s] selly, Pin[s% 1] = [D(ceth) — Tet?/s]
sely, Piy[s7,t] = [Tet?/s] selly, Piy[sht] = Az [D(zet?) — Aefl/s)

selly, Pig[s%t] = [Tetl/s| A N\ z[D(zet) — Aetl/s]

Re 5.19vi. Employ 5.109iii:

O(set) = O(set
O(set),O(set
selly,O(set), [O(s
selly, O(set), [O(set) — sTet/sT] = s'et

selly, O(set), Az [O(zet) — 2Tet/sT) = sTet
selly, O(set), [Iet/s) AN z[D(zet) — 2et/s?] = sTet

sqet = szlet

2 2]
) — slet = stet
5.19iii
€

t) — sTet/s] = s'et

5.7iii

Re 5.19vii. Employ 5.19ii, 5.19v, and 5.19vi. The inference marked by *
is according to 135.20vii in [15]:
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selly, O(seb), Piyfsh b] = s'eb
selly, Piy[s%,b] = Piy[s,b] selly, seb’, Piyfshb] = s'eb
[seTT3] 2, Piy[s,b7] O seb? = Piy[s,,b] D s'eb
[sells] 2, Ay (Piyls,y] D sey) = Piy[s%,b] D sTeb
[selTa] 2, O(s7e Z2), Ay (Piys, y] O sey) = Piy[s,b] O steb
[selT3] 2, O(s7e Z2) 0 Ay (Bigls,y] D sey) = Piy[s™,b] O seb
[selTs)® = Piy[s%b] D s'eb
selly = s'e Zo [seIly)® = Ay (PBiy[s,y] O sTey)
O(selly) = O(sTe Z2) O(selly) = Ay (Piyls™, y] O stey)
[O(selly)])? = O(s’e Za) 0 Ay (Biy[s™, y] O s'ey)
[O(sellz)]? = sTers (O(zeZ2) o ANy (PBis[z,y] D zey)) .

Re 5.19viii. Employ 5.19i and 5.19vii. Completely straightforward, but
nevertheless, here is a deduction:

= Jell; [O(aelly)]? = a’elly
= O(Ielly) O0(aelly) = O(a’elly)
selly = D(sef[“g)

Re 5.19ix. This is an immediate consequence of 5.19viii.
Re 5.19x. This is a straightforward consequence of 5.19viii, ix, and vii:

*

5.17i.

selly = O(selly) selly = O(selly) O(selly), O(selly) = sTelly

sellyoselly = O(sellz)00(sellz) O(selly)o0(selly) = sTclly

P—— *
sclly = scllo0selly SGHBQDSEHGQ:>SZI€H=2

o y -~ .
selly = s elly QED

REMARK 5.20. Notice the strange detour in the deduction of seIly =
s7eT3. 1 should very much like to call it a detour through infinity.

COROLLARY 5.21. Inferences according to the following schemata are
LiDZ-derivable.

I, 52161![5,17 =C
I selly, I = C

(5.21)



ADDITIONS AND CORRECTIONS TO DIAGONAL METHOD ... 149

I,selly, IT,sell3,0 = C

(5.21ii) _
selly, I 1,0 = C

As in the case of f[“, this provides for a form of “induction”.

THEOREM 5.22. Inferences according to the following schemata are
I}D%Q—derivable.

31 = 3[a”], O(aelly) = OF[d]

(5.22i) ;
sely s = C
(5.22i) = §l1]  OFla), D(aelly) = §la]
| sef[°2 = F[s]
(5.22iii) =31 (O3], D(aells) = Fla’]

selly = OFs]

Proof. Straightforward consequences of 5.17i and 5.21 in the usual way.
Re 5.22ii. Employ 5.19x:

aelgf’g = azIel!I"g

aclly, §la] = a’clls
aclly0§la) = a’elly  O(aclly),0§[a] = §la’]
= Ielly; = §[]] O(aellz05a]) = d¥elly [O(acllzoFa))]? = Fla’]
= Telly0F[I] [O(aciTz0§a))]® = alelly 0F[a”]

= O(Ie 03[1) O0(aeclly 0§[a]) = O(a¥elly 0F[a’])

selly = O(sell>03(s])

selly = sell2 0F[s)

selly = §[s]
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Re 5.22iii.

O3 a]]*, O(aellz) = la’)

= 31 [OF[a)]™, aclly = F[a’]
= OF[1] 00a), D(aclly) = OF[a’]
selly = OF]s] QED

The next proposition somewhat corresponds to proposition 134.9 in
[15], p. 1829.

PROPOSITION 5.23. Sequents according to the following schemata are
LDZ -deducible.

(5.23i) selly, [A/s],[B/s] = [AnB/s]
(5.23ii) selly, [A — B/s],[A/s] = [B/s]
(5.23iii) selly, [AV-A/sT), A= 0OA
(5.23iv) [AV -A/I),0A = [A/]]

(5.23v) selly, [AV -A/sT),0A = [A/s7]
(5.23vi) selly, [AV -A/s],0A = [A/s]

Proof. Re 5.23i. In principle as for 5.23ii; left to the reader.
Re 5.23ii. I only show the “induction step”
[A— B/a] = [A — B/d] [A/a] = [A/a]
[A— BJal,[A/a] = [A — B/a]o[A/a] [B/a] = [B/a]
[A— B/a]o[A/d] — [B/al],[A — B/a],[A/a] = [B/ad]
O([A — B/a]o|A/a] — [B/al]),0[A — B/al,0[A/a] = O[B/d]
O([A — B/a]o[A/a] — [B/d]),[A — B/d"],[A/a”] = [B/d”]
O([A — B/a]o[A/a] — [B/d)),[A — B/a"|c[A/d”] = [B/d’]
O([A — B/a]o[A/a] — [B/a]) = [A — B/a"|a[A/d”] — [B/d"]
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Re 5.23iii. Employ 134.18i from [15], p. 1833:
[AV-A/a'],A=[AV-A/a']loA OA=0A
[AV-A/d]0 A — DA [AV —~A/d?], A= OA
[AV-A/a']oA—OAOAV -A/d?], A= 0OA
O(AV -A), A= 0A [AV-A/dT|0A — OA[AV ~A/a®], A= 0OA
[AV-A/IT,A=D0A [AV-A/dl)0A— DA [AV-A/d®|0A= DA
[AV-A/TTl0A=0A [AV-A4/a'joA—OA=[AV-A/d®|0A— DA
=[AV-A/IT0A - 0A O(AV-A/d|0A—DOA)=[AV-A/d® |0 A— DA
selly = [AV -A/sT|0A — OA
selly, [AV-A/sT, A= D0A
Re 5.23iv. Employ 134.13i from [15], p. 1831:
OA= A
OA = [A/]]
[AV -A/I],0A = [A/I]
Re 5.23v. I only show the “induction step”; employ 5.23iii:

[AV-A/dT] = [AV -A/dT] aelly, [AV-A/a’],A=0A
aclly, [AV —A/dY],[AV ~A/aT], A= [AV ~A/a']0 DA
Oaelly, O[AV —A/a’],0A = O([A V -A/d"| 0 0A)
aclly, O[AV -A/d?),0A = O([AV ~A/a’] 0 OA)
aelly, [AV-A/d®],0A = O(AV-4/d"004)  O[A/dY] = [A/a™)
aclly, O([AV —A/d?|00A) — O[A/a"], [AV ~A/a®],0A = [A/d"]
aclly, O([AV -A/dT ] 00A — [A/a"]),[AV ~A/a® |0 0A = [A/d”]
aclly, O([AV ~A/dT]00A — [A/a"]),[AV ~A/a’ |0 0A = [A/d"]
aclly, O([AV —A/d|00A — [A/a]) = [AV -A/a®]00A — [A/d"]

Re 5.23vi. Straightforward consequence of 5.23v and 5.23iv by 5.22ii.
QED
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REMARK 5.24. Apparently, 134.9iv in [15], p. 1829, doesn’t survive in the
form .
sellz, [AV -A/s],A=[A/s].
In order to see this, confront
AV-A AV -AA= AnAc A
which is obviously IiD;-deducible, with
O0(Av-A),A=004

which, apparently, is not LiD%-deducible. But while 134.9iv survives in
some form, at least, wviz., as 5.23vi, there doesn’t seem to be anything
corresponding to 134.9ii, i.e., something like
selly, [AoB/s] = [A/s|a[B/s)
perhaps. This can be seen from the following consideration: while
(AuB)o(AoB) = (AuA)o(BoB)
is IIDy-deducible,
O(AoB) = 0Ac0OB

is, apparently, not LIDZ-deducible.’® This may be taken to indicate that
is not just a repetition of the same kind of necessity operator that is
already available in [.

5d. Applications. Just as IT" could be employed to define notions
of necessity and weak implication, so can II5.

DEFINITION 5.25. EA := Az (zelly — [4/x]).

The following proposition corresponds in an obvious way to proposi-
tion 134.13 in [15], p. 1831.

PROPOSITION 5.26. Sequents according to the following schematla are
Linz—deducible.

(5.261) EA= A
(5.26ii) EA = 04
(5.26iii) EA = 04
(5.26iv) EA = @O0A

16 Cf. remark 135.13 in [15], p. 1844.
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(5.26v) EO"A = BOY A
(5.26vi) EA = BO"A

(5.26vii) EA,EB = E(AoB)
(5.26viii) E(A — B),ZA = 2B
(5.26ix) selly = Bl(selly)
(5.26x) selly = [selly/s)

153

Proof. Re 5.26i. As for 134.13i in [15], p. 1831, only with IT; instead of

IT.
Re 5.26ii and 5.26iii. In view of 5.26iv, these are left to the reader.
Re 5.26iv.

0A = 0A
oy o — - 5.17ii
aclly = a’elly aelly, [A/a”] = [OA/a)
alelly — [A/a”],aelly, aclly = [OA/d]
5.21ii

alelly — [A/a”), aclly = [OA/d]
Nz (zelly — [A/z]),aclly = [JA/q]
Nz (zelly — [A/z]) = aclly — [JA/d]
Az (zelly — [A/z]) = N\ (zelly — [OA/z])

Re 5.26v. This is just 5.26iv, only with (1" A being substituted for A.

Re 5.26vi. Employ an induction on n, based on 5.26v and 5.26vi.
Re 5.26vii. Employ 5.23i:

aclly = acll; [A/a],[B/a),aclly = [Ao B/d
aelly — [A/a),aclly — [B/a),aclly, aclly, acll; = [Ao B/d]
aclly — [A/a],aelly — [B/a],aclly = [Ao B/a)

Nz (zelly — [A/z]), Nz (zelly — [B/z]),aclly = [AoB/d
Az (zelly — [A/z])), Az (zelly — [B/z]) = aclly — [AoB/x

5.21ii

Az (zelly — [A/z]), Az (zelly — [B/z]) = Az (zelly — [AoB/x])

Re 5.26viii. Essentially, what has to be shown is that
= [A — B/Ilo[A/I] — [B/I], and
(A — B/a]o[A/a] — [B/a]) = [A — BJa¥| o [A/a¥] — [B/d]
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are I}D%Q—deducible. The first one is completely straightforward. As re-
gards the second one, employ 5.23ii and proceed as for 5.26vii:

aclly = aclly [A — B/a),[A/a),aclly = [B/d]
aclly — [A — B/a],aclly — [A/a), acIly, aclly, aclly = [B/d]
aelly — [A — B/a],aclly — [A/a],aclly = [B/d]
Az (zelly — [A — B/z]), Nz (zelly — [A/z]),acly = [B/a)
Az (zelly — [A — B/z)), Nz (zelly — [A/z]) = aclly — [B/d]
Nz (zelly — [A— B/z)), Nx(zelly — [A/z]) = Az (zelly — [B/x])
Re 5.26ix. Employ 5.19iv and 5.19x;

5.21ii

= Jelly celly = cTelly
= B(Ielly) Bl(celly) = B(cTelly)
selly = (seﬁé)

Re 5.26x. Employ 5.26ix:
selly = /\:c(a:efla — [sef[Q/x])
selly = selly — [seffg/s]

selly, selly = [selly/s]

selly = [selly/s] QED

PROPOSITION 5.27. Inferences according to the following schemata are
I}D%Q-derivable‘

. = A
(5.271)
=0A
O"A,I'= B
(5.27) A —
EA, = B
UA= B
(5.27iii) —_
kA = 2B
. O"A=B
(5.27iv)

A = BB
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o' r=c=C
(5.27v) S——
Bl = EC
I'= A
(5.27vi)

selly, B = [A/s]

Proof. Re 5.27i.
O[A/c] = O[A/(]
= [A/]] O[A/c] = [A/cT]
aclly = [A/a)
= aclly — [A/d]
= Az (zelly — [A/z])

Re 5.27ii-5.27vi. These are all fairly straightforward consequences of the
results from 5.26 by means of 5.27i. I only show 5.27iv as an example.
Employ 5.26vi and 5.26viii:

O0"A= B
= 0"4— B )
= BE(0"A — B) > E(0"A — B),E"A = BB
BA = B0°A B0"A = BB *
ZA = BB * QED

REMARK 5.28. In view of 5.27ii and 5.27iv above, we can now say
realizes the intention of [J. The new symbol is chosen to allow a further
development of the hierarchy: Bl [4, etc., with &, of course, being [J.

PROPOSITION 5.29. Sequents according to the following schemata are
LDZ-deducible.

(5.291) E(AV -A),04 = B4
(5.29ii) B(AV -A),HA— B=0A— B
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Proof. Re 5.29i. Employ 5.23vi:

aclly = aclly aelly, [AV —A/a],0A = [A/d]
aclly, aclly, aclly — [AV —A/a],0A = [A/d]
aelly, aclly — [AV —A/a),0A = [A/d]
aelly — [AV =A/a),0A = aclly — [A/d]
Nz (zelly — [AV -A/z]),0A = aclly — [4/d]
Az (zelly — [AV -A/z]),04 = Az (zelly — [A/z])

5.21ii

Re 5.29ii. As for 134.18ii in [15], p. 1833, this is a straightforward conse-
quence of the foregoing result, in this case 5.29i:

B(AV-A),A=EA B=B
E(AV -A),BA > B,0A= B
E(AV-A),HA - B=0A—B

QED

With the notion of 2] available, a form of induction with side-wffs,

i.e., induction under assumptions, can be established for f[”g—induction,
just as in the case of II" and [J.

PRrOPOSITION 5.30. Inferences according to the following schema are
I}D%Q—derivable.

=3[ OFa],aclly, I' = Fld’]
selly, B = [s]

Proof. Let £ :=\x §[z]. Employ 5.19x:
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OFla], T, selTs = §la’]
O (aef), I selly = a2[e§

Isell; = O(aef) — (a €f)
5.17iv
I = §[I] selly, [I'/s], [sell2/s] = [0 (acé) — (aqeﬁ)/s]
5.26x
I'=1I¢¢ selly, [[/s], selly = [0 (aef) — ZI )/ 3]
5.21ii

selly, [['/s] = [1&/s] selly, [['/s] = [O(acf) — (a” ef)/s]
selly, [I/s] = Nz [0 (z€€) — (27€€)/s]

selly, [I'/s] = Pi,|s, €] se& = F[s)
I:I(seﬁc'z),D[F/s],‘ﬁiQ[S,ﬁ] D se€ = Fs]

O(selly), [[/s7], Piyls, &] O sc& = §[s]

selly, [I/s7], Piy[s, €] O sc& = §s]
selly, [['/s1],0(se Z2), Piy[s, €] O se& = §s]
selly, [I'/s7],0(seZa) 0Piy[s, &] O se& = Fls]
selly = s'ells selly, [I'/s7], selly = 3[s]

5.7

.26ix

selly, selly, sTelly — [F/s%],seﬁc'g = Fs]

seﬁ},seﬁé,[‘,seﬁ} = F[s]

selly, BII" = Fs] QED

As in the case of IT’, it is useful to introduce some form of an inclusive
version of II5.

DEFINITION 5.31. Iy := Az \/y (B(y = z) nyelly).

PROPOSITION 5.32. Inferences according to the following schemata are
I}D%Q—derivable.

(5.32i) . 4= 5
selly, [A/s] = [B/s]
(5.32ii) A= B

selly, 0[A/s] = [B/s]
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I'= B
selly, [I'/s] = [B/s)

Proof. Essentially consequences of the corresponding proposition 5.17 for
the exclusive case. I shall only show 5.32i as an example.
Re 5.32i. Employ 5.17ii:

(5.32iii)

belly, [A/b] = [B/b]
b=sb=s,belly [A/s]| = [B/s]
O(b = s),belly, [A/s] = [B/s]
Bl(b = s),belly, [A/s] = [B/s]
El(b = s)obelly, [A/s] = [B/s]
Vy (B(y = s)oyelly), [A/s] = [B/s]
selly, [A/s] = [B/s] QED

As in the case of I, this gives rise to a notion of “weak” implication.
DEFINITION 5.33. A B := \/z (zellyo([A/z] — B)).

PROPOSITION 5.34. Inferences according to the following schemata are
I}D%-deducible‘

) [A|", = B
(5.34i) S —
I'=A>»B
O"A,I'= B
(5.34ii) _
I'=A>»B
I'=A II=A>»B
(5.34iii)
EILII = B
I'==A B, II=C
(5.34iv)
A>» BRI = C
A—-B)=(C;—(...— (C, = B) ...
(5.349) ( )= (C1—( ( )--2))
(AaB)=(Ci2(...2(Ch » B)...))
AQ,F:>A1 Bl,DnAQ,HéBQ
(5.34vi)

Al@Bl,F,HjAQEBQ
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B,0"A, T = C

(5.34vii)
A B, I'=A>C

Proof. In view of the similarity to the case of D in [15], propositions
135.17, 135.20 and 135.22, I leave the proof to the reader. QED

REMARK 5.35. In view of remark 5.24 above, inferences according to the
following schema
RIA, "= C

B(AV-A),A T = BC

cannot be expected to be generally I}sz—derivable.

I now turn to the reason why I have gone to all the trouble with the
notion of 2: nested double induction.

PROPOSITION 5.36. Inferences according to the following schema are
I}D%‘Z-derivable.
I''beN" = [0, b]

Ny Sla,y), II,acN° = Fd/, 0]
NySla,yl, §la'b],acN beN, = = §la', ]

seN" teN" ORI, OEE = §[s, t]

Proof. The inference marked by x; is somewhat (give or take some weak-
enings) according to 136.11ii, and that marked by %5 is according to
136.11iii in [15], p. 1863.

Ny38la,yl, II,aeN = F[a’,0] Ay JFla,y], F[a’,b],ae N, beN, = = Fla', V']

*
I''beN" = §[0,b] OANyla,y], O, 0=, ce N° = Fld/, ] '
I = Ny30,9] OAy 8la, y], O, 0= = Ny 3, y]
BRI = B Ay 5[0, y] BINY Fla, y], BIL,EZ = BNy §ld, y]

*2
seN, B, 017, 0BE = BIAY s, y]

se N, BN ORI, ORIE = Ny 3(s, y]

seN°, teN°, B, ORI, OBE = s, 1] QED
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. 17
6. General Corrections

Note. This list does not necessarily cover obvious typos or silly little gram-
matical mistakes and it is far from being complete. I you find a mistake,
please drop me a note at uwe.petersen@asfpg.de, and I promise that
you will get a mention in the next list.

p. 30, line 4: replace “f(z) = y” by “g(z) = y”.

p. 45, first line: replace “additive numbers” by “principal numbers”.

— line 16 (DEFINITION 4.26), before “multiplicative principal number”
insert “(2) An ordinal number « is called a”.

p. 65, line 8 from the bottom (HISTORICAL NOTE 8.8), replace “Dedekind
[1887]” by “Dedekind [1888]".

p. 75, line 11 from the bottom, replace “fi(x) = ¢(x,k) for all x” by
“fie(x) = d(x,k) + 1 for all x”.

p. 131, line 6 from the bottom, replace “€[B]” by “~&[B]".
— line 5 from the bottom, replace “F[B] — €[B]” by “~(§[B] — ¢[B])".

p. 149, last line, replace “—A” in the inference rule (L¢) by “(—A)”.

p. 161, line 7, (16.45v), replace the lower sequent “I" = —(A — B)” by
“I'=> A, —-(A— B)".

p. 182, line 15 from the bottom, delete “clause (ii) of definitiom 18.16.”.
— line 17 from the bottom, delete “indexset(s)!of wifsldownward satu-
rated”.

p- 183, line 19 from the bottom, replace “C; — C5” by “Ci A Cy”.
p- 189, line 18, replace
EAUNVV,=(mU V-V A ... AZ[-U V V,=(=U v =V)]”
by
“FirUVV,~(mUVV)A .. AZK[U VV,=(=U V)"
p- 192, line 14, replace
“I'[A] = A[A], A[A] A €[A)” by “I'[A] = A[A], F[A] A €[A]".

17 With special thanks to Valerie Kerruish who detected most of the mistakes.
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— lines 15 and 20, replace “A « B,I'[B] = A[B],A[B] A €[B]” by
“A— B,I'B] = A[B],AB] A€[B]".

p. 197, line 8 from the bottom, delete “indezvariable(s)!sentence”.
p. 198, line 2 from the bottom, replace “_L-inference” by “_L ¢-inference”.

p. 200, the bottom:

- Al = B
I'= A II=A—B
1= B '

instead of:

r=A A1l = B
II=A—B
il =B

p. 213, second line in top proof figure, right branch, replace “©,I'[] =
Al A, E” by “O,B,II[] = A[], ="

p. 214, second line in top proof figure, left branch, replace “II,I'[ | =
AlL A K, ANB by “IL T[] = A[], A, A, A\ B,

p. 217, line 1, replace “max(l,m) + 1 + 1”7 by “max(l,m) +1 +r+ 1.

p. 241, line 12 from the bottom, condition “(vi)”: read “LK{” instead of
“GK877.

p- 242, last line, read “Only the second one” instead of “Only the fourth”.

p. 247, line 6, replace “dropping axioms HA13 and HA15” by “replacing
axiom HA13 by ——1 — 1 and dropping axiom HA15 completely”.

p- 249, proof figure “Re 24.7iv”, first line: read “A = AV —A” instead of
“A= A= A%
p. 250, lines 3-6 from the bottom, “(24.11i)—(24.11iv)”, read “acc.” instead

of “max”.

p- 301, line 13 from the bottom: read “contradictions” instead of “contrac-
tions”.
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p. 306, line 5: read “marked with the sign «” instead of “marked with an
exclamation sign”.
— line 7 proposition 27.7: read “DSL” instead of “CDL”.

p. 307, replace proof figure in the middle of the page:

A=A

A=A -A A=
A—-A A A= A=A
A— A AnA = = A -A

A—-AA— AcA=-A
A— AoA= (A—-A) —-A

by:
A=A
A=A -A A=
A=A A—-AA A=
= A, -A A—-AAcA=

A—-AA— AcA=-A
A— ApA= (A—-A)—-A

p- 309, second line: add “logic” after “dialectical”.

p. 316, first line: cancel 27.35viii; already 27.35vi;
— second line: read “(A ¢ —A) < T” instead of “(A ¢ —A) « 1"

p. 352, 1.10 from the bottom (COROLLARY 30.21): read “30.21i” instead
of “30.80";

— 1. 11 from the bottom (COROLLARY 30.21): read “30.21ii” instead of
“30.817;

— 1.12 from the bottom: read “30.20i” instead of “30.17i".

p. 460, after the first proof figure, replace: “A new deduction is being con-
tracted as follows” by : “A new deduction can be constructed as follows”.

p. 466, 1. 12 from the bottom, DEFINITION 41.6: swap (1) and (2).
p. 468, last three lines: replace DEFINITIONS 41.14 by the following;:
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DEFINITIONS 41.14 (1) uni[§] := A\ 21 A\ 22 (§[z1] 0F[22] — 21 = 22).
(2) 1 §lo] == ha Ay (uni[§] 0 §ly] — wey).

p- 469, replace PROPOSITION 41.15 by the following:
PROPOSITION 41.15. Sequents according to the following schemata are
LX;-deducible for X € {K,J,P,D}.

(41.15i) sewr Flx), \ 21 A\ 22 (§[z1] 0 F[22] — 21 = 22), §[t] = set
(41.15i1) set, §[t] = sewx F[z]

(41.15iii) Nz N\ 22 (§lz1] 0 F[22] — 21 = 22), §[t] = ww Flz] =t
Proof. Re 41.15i.
uni[§], §[t] = uni[§) o F[t] set = set
uni[§] o§t] — set, unilF], F[t] = set
Ay (unil8] 03[yl — sey), uni[3], §[t] = set
sewx Fla], Aor A\ 22 (Blz1] 0Flz] — 21 = 22), §[t] = set
Re 41.15ii.
§[t], §b] = §[t] o 5[0] b=t set= seb
set,F[t] o] — b=t F[t],§[b] = seb
set, §t], A 21 \ 22 (§z1] 0F[22] — z1 = 22),§[b] = s€b
set, §[t], uni[F], F[b] = seb
set, §[t], uni[§] o F[b] = seb
set, F[t] = uni[F]oF[b] — seb
set, 3lt] = Ay (uni[3] 03y — sey)
set, F[t] = sewx §x]

Re 41.15iii. This is a fairly straightforward combination of 41.15i and ii.
Left to the reader. QED

p.484, 1.9 from the bottom “41.57iv": read “teT,s’ = t,res = ret”
instead of “teT, s’ =/, ser = set”.

p- 491, “Re 41.72iii”: involves a cut which doesn’t make it suitable for LP;,.
p. 492, proof figure “Re 41.74i7", replace “((s,0'),4(s,0,f(s)))ebh” by
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“((s,0),f(s))) €b”
p. 495, proof figure “Re 41.781”, second line: add “teN, ((s,t),r)” before

“ c b777
— proof figure “Re 41.79i”, replace lower sequent by

SN = ((5,0),h(s,0)) €b.
p. 499, 1. 10 from the bottom (in REMARK 42.3): replace

et ={z: Ve Vy(z={(x,y)oy =t},
by

et ={z: Ve Vy(z={x,y)ny=1)},
— 1.3 from the bottom: replace D by P.

p. 502, 1. 11 (DEFINITION 42.11. clause (6)) add: “with z being the first
variable ¢ FV(AB)”.

p. 564, 1. 6 from the bottom: “obtained from them” instead of “obtained
form them”.

p. 570, 1. 6: read “LXIQ—admissible” instead of “HXIQ—admissible”.

p- 572, 1. 2: “the formal principles” instead of “the formal principle”
— 1. 4: “The remainder of this section” instead of “The remainder this
section”

p. 574, 1. 14 and 15: “A x §[z]” instead of “A z [z]”

p. 586, 1. 4 (proof figure, second line): read “b < ¢,c < a’,b < a — —F[b]”
instead of “—~F[b])”
— last line: replace

~=Va§lz] = Vy Byl ANz (z <y — =5[z])).
by

(Ve §lz] = Vy Byl ANz (z <y — =5l2]))) -
p. 605, 1. 18 from the bottom (DEFINITION 48.4 (2)): replace “fof (r, s)” by
“fof (1)

p. 607, 1. 6 from the bottom (main text): replace “free variables.footnote”
by “free variables.” and read the sentence beginning with “Primitive re-
cursive functions” and ending with “variables in PRA.” as a footnote.
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p.621, 1.4 (REMARK 48.61): read
Nz (@2l vV =3[z]) = Ve Ax((§[z] < ¢e(2) =1) A(de(2) =0V de(z)=1)),

instead of
Az (§lz] vV §lz]) = Ve Az ((§ < de(2) = 1) A (de(z) =0V de(z) =1)).
p. 739, 1. 19 (QUOTATION 57.27): read “in very few cases or none” instead

of “in very few cases or non”.

p. 894, 1. 4 from the bottom (footnote 2): replace “Wang [1986]” by “Wang
[1987]".

p. 1011, 1. 8: read “from” instead of “form”.
p. 1017, 1. 14 from the bottom: read “it follows” instead of “if follows”.

p- 1026, 1. 13 from the bottom: read “This sounds like” instead of “This
sound like”.

p. 1030, 1. 16: read “from the value” instead of “form the value”.
p. 1081, 1.6, QUOTATION 76.16. (1), add: “Weyl” before “[1921]”.

p. 1087, 1. 23 from the bottom, QUOTATION 77.8. (1), new paragraph after
“meaningless.” and before “In all contexts ...”.

p. 1087, 1. 14 from the bottom, QUOTATION 77.8. (1), add: “put” before
“numerals for the variables in such a way ...”.

p- 1088, 1. 22, QUOTATION 77.9. replace “ist” by “is”: “correlate of a sub-
class is that subclass itself”.

p. 109, after 1. 24 (QUOTATION 78.12) add line: “expresses a true proposi-
tion with respect to every one of these models, we”

p- 1099, 1. 11 from the bottom: replace “67.20” by “78.17”.

.1102, 1. 13: replace “Wang [1986]” by “Wang [1987]".

. 1104, 1. 4 from the bottom: replace “Wang [1986]” by “Wang [1987]".
. 1106, 1. 3: replace “Wang [1986]” by “Wang [1987]".

. 1108, 1. 16: replace “form” by “from” in QUOTATION 79.10.

. 1109, 1. 1: replace “Wang [1986]” by “Wang [1987]".

T T T T T
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. 1126, 1. 19: replace “Wang [1986]” by “Wang [1987]".

. 1133, 1. 4: replace “ Brouwerian” by “ Brouwerians”.

. 1158, 1. 3 from the bottom: replace “Wang [1986]” by “Wang [1987]".

. 1161, 1. 16: replace “Wang [1986]” by “Wang [1987]".

. 1169, 1. 4: read “share no fixed point” instead of “share not fixed point”.

. 1185, 1. 16 from the bottom (QUOTATION 85.10 (4)): read
Vay ... Vept(x, ..., 2, =0) instead of “Vay ... Va,(t =0)".

p. 1207, L. 5: replace “Wang [1986]” by “Wang [1987]".

T T T T T T

¢

p- 1300, 1. 1: read “how many angels” instead of “how man angels”.

p. 1303, 1. 2: read “d’étre for the” instead of “d’étre n for the”.
— 1. 14 from the bottom: read “Godel” instead of “G"odel”.

p. 1307, 1. 1: read “amenable” instead of “amendable”.

p. 1368, 1. 7 from the bottom, “(3) Girard [1995]”: replace “p. 28” by “p.
1717;

— 1.4 from the bottom: read “work” instead of “word”;

— last line (of text): read “[1982]” instead of “[1974]".

p. 1387, 1.8 from the bottom (footnote 11): replace “Wang [1986]” by
“Wang [1987]".

p. 1412, 1. 4: replace “and Wandschneider [1984]” by “Kesselring [1984],
and Wandschneider [1991]”.

p. 1546, L. 13 from the bottom: replace “&prduilel” by “dprduntilel”.

p. 1421, 1.9 from the bottom (disregarding footnotes): replace “ancient

339 YRR 339

means “never”.” by “ancient means “ever”, “once”.

p. 1557, 1. 6 from the bottom: delete “Take, e.g., tertium non datur for
negated wifs, = A V == A; this is perfectly provable in intuitionistic logic”.
This is utter nonsense and I have no idea what was going on in my mind
when I wrote it. Perhaps I was thinking of ‘double negation’, -—A4 — A,
which holds intuitionistically for negated wifs: =——A — —A. This is what
it can be replaced by: “Take, e.g., the double negation of tertium non
datur, =—(A V = A); this is perfectly provable in intuitionistic logic”.

p- 1571, 1. 2, replace the topmost proof figure by the following one:
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ReR = ReR
R¢R,ReR =
ReR = ReR ReR,ReR = ©
= ReR,R¢R ReR =
-

= R¢R

and (on the same page), in second proof figure, last line, read “R¢R ="
instead of “ReR ="

p. 1601: replace diagram 116.10 by the following one:

e e R
[T META- T
H B PRIMARKALKUL THEORY H
LT —t object variables - i
T § N
T 32 g N
T S £ N
T = 3 T
HY IS compound wffs v 1
[ WS = 11

2 1
ol i —— 37
il = inclusion S in
| | W& 4
N B N
[T B <> compound terms < in
ERESERESRESEEEEEEBEERERERNNREES

p. 1621, 1.9 from the bottom: replace “ A y” by “A Y.

. 1630, 1. 18: 1nsert “)” before “="; i.e., replace “(F[ta] V -F[t2] =" by
“(8lta] v —3t2]) =

p- 1669: in the proof figure “Re 123.13ii”, sixth line: replace

NT C Az (§lz] = b) by AT A A (§la] — )"

In remark 123.14, second line, replace “that” by “than”.

p- 1670: in the proof figure “Re 123.18i” replace “_L” by “T” throughout.

In the proof figure “ Re 123.18ii” replace the second line“A — @ = B — @’

by “B — a = A — @’ and the third C — (A - a) = C — (B — a)” by

“C—-(B—a)=C—((A—a).
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In the proof figure “Re 123.18iii” replace the second line “A — (C —
a)=B— (C—a)’by“B— (C—a)=A—(C—a).

p. 1705, (125.12iii): replace
s=t=h(y(y=a) Cs) Chr(hy(y =2) Ct))
by
sCt= r(yy=x) Cs)Chr(y(y=2) Ct))
— Re 125.12iii: Replace proof figure by:
sCtay(y=a)Cs=hy(y=a)Ct
sCt=aaywza)Cs)Trlyy=a)Ct)

p- 1706, 1. 2, proof of proposition 125.15, replace the whole thing by the
following;:

Proof. By means of contraction it is possible to prove a contradiction
along similar lines as for 141.11 in the appendix A1, only with somewhat
more rudimentary notions due to the lack of 41.2 (1.2) and (2.3). Take R

to be defined as Ax ({x} ¢ x) and consider the following deductions:
{a}Ca=T{a}Ca
=>a=a {a},@a,{a}éaé
{a}éaé{a}éa {a}'C_'R,{a}'C_'aé
A ({JZ} Ca)Chx ({:c} CR), {a.}: Ca, :{a} Ca=
GQR,{G}QG,{G} Ca=
aiR,{al}Qa,:{.a.}iéaé

125.14

a=R, {a} Ca= *
a=R= :{'a} Za
— — 125.71,
= {R} Chx({z} £ x)
and also:
a=R= :{'a} ,@ a

= {RfChaz({a} g )
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Continue as follows:
= {R} R
= {R} = {R} RiZR=
{(RICR= . QED

p. 1729, 1. 4 from the bottom: insert round bracket after ||PL:

—=(se|hr ¢[z]||PY) = se iz ¢[x]||PL.

p. 1737, first line: replace “Employ 126.64ii” by “Employ 126.63i".

p. 1759, 1. 5, (128.27ii), replace h by f: r1 = s1,72 = 8o, f[r1,72] =t =
f[[sla 52]] =t.

p. 1763, 1. 15 from the bottom “128.34ii": read “= 0eT” instead of
“teT,ser,rect = set’.

p. 1809, 1. 16 from the bottom (proof of lemma 132.13, third last line):
read “By proposition 126.35” instead of “By proposition 131.22".

p. 1818, 1. 7 from the bottom (PROPOSITION 133.8): read “D has the left
rank 17 instead of “D has the rank 1”.

— L 5 from the bottom: read “If the left rank were” instead of “If the
rank were”.

p- 1823, 1. 6 from the bottom, replace
I[Nz (zeb— zleb)] = seb
by
5[\ z(zeb— z1eb)] = ses.
— Second last line, replace
I[A\z(zeb— 2leb)|™ = seb
by
I[N\ z(zeb— 2leb)|™ = sec.
p- 1824, second line in the proof of theorem 135.15, replace “4; > 0” by
“(51 > 0.
p- 1825, DEFINITION 134.1., replace
Il =)z (zecZoNyTeyn|\z(zey — 2l ey)/a] — zey))
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by
IT =)z (zeZoAy([TeyA\z(zey — 2l ey) /] — zey)).
p. 1830, first line (134.9iv), replace “131.18ii” by “131.18i".
p. 1832, second last line (134.16iii), replace
LID?u{00L — 1) - 0L}F 100L — 1) - 0L
by
ID?u{00L — 1) —-0OL}F L.

p. 1834, replace last proof figure on that page (“Re 134.22i.”) by the fol-
lowing one:

I'= A
C=A
=(C— A
~0C—-A)  0OC— A),00 =04
Or = oc 0C = 0A *
O = OA *

p- 1842, third line, replace
(B/s],[A/ITI] — [B/1],[A/s], [A/1] = [B/s ]

by
[B/s],[A/ITNI] — [B/1],[A/1],[A/I] = [B/s T 1]

p. 1848, 1. 12 from the bottom, first line in the deduction re 135.20vii,
replace “As = A1” by “As, ' = A" and cancel “B1, As, Ao, I') II = By”
completley.
— L 11 from the bottom, second line of that deduction, replace
“aell,[Az/a] = [Ar/a” by “aell,[As/al, T = [A)/a]"

and

“Bl7A2,A2,F,Hj Bg" by “Bl7A27A27H = BQ”.
p. 1886, third line (137.8i), as well as line 10 and 11 (in proof figure),
replace “= zhf[s1,t1,71]” by “= 2hf[sa,ta, 2]
— fourth line (137.8ii), replace “= shg[s1,t1,71]” by “= shg[sa, t2, r2]’;

p. 1901, sixth line from the bottom, replace “— yeT” by “— yeT™.
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— 1.3 from the bottom, replace “— 77 by “— ye7".
p. 1903, first line, replace the quantifier \/ in the wif

~Va (dedypz(z,"G") =0) < G
by the quantifier \/":
~V'z (dedyipz(2,"G7) = 0) < G.

p- 1923, second proof figure, replace

CypeCyp= A
= CyueCy— A
= C4eCy CaeCy= A
= A *
by
CacCyu= A
= (CyeCy— A
= CeCy CacCyu= A
= A *

p. 1925, Re 141.ii and iv, third proof figure from the top, replace “&
Keiz (Cz¢z)” by “= Kehr (Crex)”
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