Induction and Primitive Recursion in a
Resource Conscious Logic — With a New
Suggestion of How to Assign a Measure of

Complexity to Primitive Recursive Functions

UWE PETERSEN

AsTrACT. In [22], I presented a general approach to the definition of
primitive recursive functions on the basis of a higher order logic without
contraction employing a new kind of infinitary inference, the Z-inferences.
The present paper is essentially a rewriting of this approach based on
fixed-point constructions for the primitive recursive functions and a par-
ticular concern for the number of Z-inferences involved in proving results
such as the recursion equations of primitive recursive functions and their
totality.

1. Introduction

Ever since the recursive functions have been identified there was
a challenge to measure their inherent computational complexity,
or in Kleene’s words [[15]] to “classify the recursive functions into
a hierarchy, according to some general principle”.!
The present paper can be seen as a somewhat outlandish attempt to
contribute to the problem of classifying primitive recursive functions.?
It is based on a treatment of induction within a type free logic where
“type free logic” is here used in the sense of [1] to mean that a logic “does
not, only possess formally the property of freedom of types, but beyond
that an unrestricted axiom of comprehension.”® Since the meaning of
“unrestricted axiom of comprehension” may leave room for interpretation

L [25], p. 534.

2¢“Qutlandish” in the sense that the author’s primary research interest is dialectic
in the Hegelean tradition and the ideas underlying the present contribution come out
of that framework.

3 On p. 3; my translation.
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(regarding the implication involved) I wish to specify that I require rules
of the form

Sls] selx §[x]

and

sehx §[x] 3s]

to be at least admissible, if not derivable.*

The basic idea for the type free logic employed here is to sacrifice con-
traction in exchange for unrestricted abstraction. Logic without contrac-
tion has this endearing feature to its credit that it allows a cut elimination
proof which does not make recourse to the complexity of the cut formula.
This is what makes logic without contraction such an ideal candidate for
an underlying logic of a type free theory: the unpredictable way in which
abstraction may change the complexity of the cut formula is irrelevant to
a proof of cut elimination. It is also what has recently made it attractive
to theoretical computer scientists in their quest for a “logic of polytime”.5

But higher order logic without contraction is also a promising basis
for a logical foundation in the style envisaged by Frege, no longer marred
by inconsistencies. In other words, it is possible to take up again the re-
ductionist approach in the foundations of mathematics after it has been
cleared of the danger of antinomies stemming from unrestricted abstrac-
tion.%

The traditional way (Dedekind) of defining primitive recursive func-
tions in a higher order logic follows the schema of induction. In the case
of addition it commonly looks somewhat like this:

(1.1) A:=Azyzazs Ay ({{x1,0),z1) ey A
Az A z2 ({21, 21), 22) — ({21, 21), 23)) — ({21, 22), T3) €Y)

with s+t := A[s, t]. I have taken this road in [21], sections 137a & 137b
and repeated in [22], section 5.

4 Type free logics of the kind presented in [2] and [6] are not “type-free” in this
(strong) sense.

5Cft. [8].

6 To be sure, this is not the only reduction that looks promising. Having gone
through the experience of running into antinomies, higher logic now shares with meta-
physics what Kant called the Dialectic of Pure Reason and my hope would be that
metaphysics in turn can profit a bit from the methods that have been developed in
foundational studies of mathematics and logic.
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A certain “impredicativity” comes in here through the bound vari-
able y being ruled by generalization. Employing fixed points this can be
achieved “cheaper”. Addition is declared as the fixed point A satisfying:

(12) A= Av1w073 ((:102 =0A2x3 = LL‘l) V
V1 Vy2 Vys (v = z10ys = 22095 = 230{{y1, y2/, ysfe A).

Here the recursive character (calling itself up) comes from an unabashed
application of the fixed point property.

Very little is actually needed on top of unrestricted abstraction to be
able to prove a general fixed point property for term-forms §

(1.3) f=Az3[f, 2|

and what is needed is not lost by giving up contraction.”

With 1.3 at hand, terms for primitive recursive functions can be in-
troduced according to 1.2 rather than the more traditional “second order”
style indicated in 1.1 and thereby save a little bit on inductions. But
when it comes to proving recursion equations and totality, some form of
induction is indispensable. If one is only interested in a numerical rep-
resentation, meta-theoretical inductions are sufficient. But for a proof of
recursion equations with proper variables, induction on the formal level
is required.

Due to the lack of contractions, however, special methods have to
be introduced to achieve what can usually by accomplished by induction.
Since the consistency of higher order logic without contraction is provable
by ordinary induction, it will be clear that induction cannot be provable
on the formal level. Actually, induction in its classical form can be shown
to be incompatible with IiDj.%

In a higher order logic, induction is provided by a term of the form

A Ny(N\z(zey — 2'ey) — (Oey — zey)).

7 The first clear statement of this (for the case of a type free logic) seems to be in
[8], p- 173, proposition 4. Note, however, that Girard reserves the symbol = for identity
(for which I use =) which is why his formulation looks slightly different. Cf. also [26],
theorem 2, [20], p. 382, [5], p. 357, [19], theorem 10. In [20], lemma 7.2, I employed a
notion of application (cf. definitions 2.4 below) which resulted in a more roundabout
way of proving the fixed point property. Employing the notion of co-domain of a
relation instead simplifies matters (cf. also [24], p. 122).

8 Cf. [24], section 10.
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This, however, no longer works without contraction: all one gets is that 0
and 0’ fall under that term. What is lacking is the possibility of repeating
the “induction step”

Nz(zet — 2/ et)
ad libitum without having to “pay extra for it”. In classical logic a wif
includes a “use-as-often-as-you-like” license, and that by virtue of the ax-
ioms for implication.”

Desirable would be a way of expressing that assumptions can be used
more often that once, but that this has to be accounted for.1? In classical
logic assumptions can always be used more often than just once, but one
is not required to keep track of multiple uses.

Induction on the basis of classical logic is cheating: the problem of
articulating “how many” doesn’t arise thanks to contraction. Frege’s anal-
ysis was more focused on the issue of a number being an equivalence class,
than on the problem of how one can establish that 3, for instance, is a
natural number without using the step (adding 1) three times. In a logic
without contraction the notion of number is strongly tied to being able
to repeat a particular operation, viz., the application of the successor
operation.

It is in these special methods that a kind of complexity comes in
which is completely absent from a classical approach: keeping track of
assumptions (resource consciousness).

Now I cannot claim to feel at home in the area of computational com-
plexity nor do I feel confident to enter the discussion. However, engaging
with the problem of recovering induction and recursion in a contraction
free logic with unrestricted abstraction, I found myself placed in the neigh-
borhood of questions concerning the possibility of classifying the recursive
functions into a hierarchy. But, as I indicated in the introduction to this
paper, my suggestion is a strange (“maverick”) one, at least from a classi-
cal perspective: it is intimately linked to the way I introduced induction
in [20] and employed it in [22]. This, in turn, cannot be separated from my
way of treating infinity, viz., through the introduction of Z-inferences. It

9 That there is a problem with implication in a type free logic has long been
observed. Paradoxes of the kind usually attributed to Curry require a restriction of
implication which makes it impossible to obtain from the above formulation what is
required for implication.

10 This is what makes the logic “resource conscious™ recycling of assumptions
comes at a cost.
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is the number of Z-inferences necessary to prove a result that will provide
a measure for complexity.!!

One last word before I close this introduction. The work presented
here is of extremely basic nature and presenting deductions may well be
regarded as a trivial exercise. But the point is to track down inferences
that account for certain “totalizations”, as I am inclined to call them,
which I hope can provide a measure of complexity. In the course of trying
to do this, I have made so many mistakes, mostly by being caught in a
classical way of thinking, that I decided it would be better, at least for
me, to write down deductions in virtually full length. This will enable
those who are prepared to take the trouble of ploughing through details
to see where I might have gone wrong and whether it will invalidate my
project.

2. Basic notions

In this section I mainly repeat definitions and provide a few basic results
that have been established in [20] and, above all, in [21].12

DEFINITIONS 2.1. (1) Primitive symbols:

(1.1) symbols for free and bound variables: a, b, ¢, and z, y, z, also with
index numbers;
(1.2) the constants A, €, \, —, and oO.

(2) The language L is defined accordingly.

REMARK 2.2. This is not the most economical choice of primitive symbols,
but rather an attempt at making more accessible considerations regarding
the notion of Z-specific wifs introduced in [20], p. 388.

DEFINITIONS 2.3. (1) Initial sequents: A = A.
(2) Structural rules:

I'=C A, T = §[s]

Weakening : _, Exchange : .
AT =C I' = sehz §[x]

M It should be clear that Z-inferences are not needed in order to prove numerical
results like 3 + 2 = 5, for instance.

12 Some of the following definitions may slightly differ from the ones I have given
elsewhere. It should be clear, however, that they are logically equivalent to the ones
given there, if not explicitly stated otherwise.
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I'=A A1l =

Cut :
1= B
(3) Operational rules.
(3.1) Rules for €:
3[s, I =C A, I = §s]
left : ; right : _
sehx §z], I = C I' = selx §[x]
(3.2) Rules for A:
§lsl,. I = C I = §d]
left : _— right : _
Ay3lyl, I'=C I'= Ay 3yl

with the usual condition on the eigenvariable a.
(3.3) Rules for —-:

I'= A B, Il =C AT'=B
left : ; right : -
A—- B, LI =C I'=A—-B
(3.4) Rules for o :
A B T'=C Ir'=A II=B
left : _— right :
AoB,I'=C 'l = AoB

(4) The formalized theory LD, is defined as the language £ with the
foregoing initial sequents and rules of inference.

DEFINITIONS 2.4. The following is a list of defined constants:'3
sCt :=Azx(zes — xet);
vV =Ax(xCux);
1

= ANz (VCx);
-A = A— L,
0 := NL;
T = —1;

)

VaFlz] = Ay(AzFz] = AT Cy) - AT Cy) (existence);
s=t:=Ny(sey — tey) (identity) ;

13 This list is in large parts identical to that in [20], p. 66 f. It is provided here for
the sake of convenience.
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AoB:=Az((A— (B—=AT Cx)) = AT Cuz);
ANB:=ANz(ANy(AMey — ABey — zey)) — AT Cx);
AVB=Ay(A= AT Cy) A(B—=AT Cy) = AT Ca);
{s}=rz(s=x) (“exclusive” singleton) ;
{s,tf=Mx(x=sVz=t) (“exclusive” pairing) ;
A—B:=(A— B)A(B— A);
s=t:=N\z(ves— zct) (equality) ;
{s} =Az(x=35) (“inclusive” singleton) ;
{s,t} =Az(x=sVx=t) (“inclusive” pairing);
(s,ty .= {{{s},0},{{t}}}  (“inclusive” ordered pair);
(s, t] ={{{s 05 {{tFfF  (“exclusive” ordered pair);
Aey Flz,y] = Az Ve Vy (z =z, yf 0§z, y]) (dyadic abstract) ;
sUt:=Ax(zesVaet);
sNt:=Ax(zesoxet);
st := Az ({t,zfes) (co-domain of a relation) ;

s[t] =Mz Ay(t,yfes — xey) (application) .

I repeat a few notational conventions from [21].

CONVENTIONS 2.5. (1) [4]2:= Ao A.
(2) [A/s] :=AAes.
(3) k[4] is inductively defined as follows:
(3.1) 1[4] :== A;
(3.2) X' [4] := A, k[A4].

Before being able to express induction over numbers, I need a way of
expressing that an assumption may be used a certain number of times.
The next definition provides some basic ingredients.

DEFINITIONS 2.6. (1) I :=Az(x =), i.e., {V}.
(2) 8! .=z (vesoxel), ie, sMI.
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Definitions 2.6 allow us to express (and prove) simple properties such
as [A/I'] « AD A.
PROPOSITION 2.7. The following is IIDy-deducible:
(2.71) [A/I] — A;
(2.7ii)  [A/s'] < [A/s]0A;
(2.71i1)  [A/sMt] = [A/s]o[A/t];
(2.7iv)  [A/s],[AJt] = [A/sTt];
(2.7v) s=t,[A/s] = [A/t].
Proof. Cf. [21], p.1792. QED

DEFINITION 2.8. s ¥ ¢ is defined inductively as follows:
(1) sntt:=snt;
(2) s t:=(srkt)nt.

PROPOSITION 2.9. The following is LiD)\—deducible:
(29) = (snt)f =(s"11th);

(2.9i1) = ((sntynr) = (T neynel;
(2.9ii) = (sr¥r)n@Enkr) = (snt)n*r.

Proof. These are straightforward consequences of the associativity and
commutativity of M; left to the reader. QED

DEFINITIONS 2.10. (1) The (intuitive) set ¥ is defined inductively as
follows:

(1.1) I is an element of ¥;

(1.2) If s is an element of W, then so is s?.
(2) If m € N\{0}, then its corresponding ¥ -element is defined inductively
as follows:

(2.1) I is the corresponding W-element of 1.

(2.1) If 72 is the corresponding W-element of n, the 7! is the correspond-

ing W-element of n’.

REMARK 2.11. In the appendix, section 12 at the end of this paper, this
correspondence between natural numbers > 0 and elements of ¥ will be
established on the formal level.
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DEFINITIONS 2.12. (1) ¥[A] := Az ((vex)o A)edx((zex)o A) .1
(2) Z =M Ay(§[\z(zey — 2l ey)] = (Tey — wey)).

I list a few properties of 4.

PROPOSITION 2.13. The following is IIDy-deducible:

(2.131) ¥[A] = [ JoA;

(2.13i)  §[A] =

(2.13ii)  ¥[A — ] 3A] = B;

(2.13iv)  4[4] — (A — B),¥[A] = B.

Proof. Cf. [21], p. 1804. QED

PROPOSITION 2.14. The following is IDy-deducible:
(2.14i) = 1eZ;

(2.14ii)  seZ = s'eZ;

(2.14iil) se€Z = (sM*1)eZ.

Proof. As regards 2.14i and 2.14ii, cf. [21], p. 1806. 2.14iii is obtained by
a straightforward induction on k which is left to the reader. QED

DEFINITIONS 2.15.

(1) Ir :)\:v(erDu/\y([Iey/\/\z(zey—>zley)/:v]—>xey)).
(2) 0A:= A= (:velT’u[A/x])

(3) ADB:= \/x(xeﬂ o([A/z] — B)).

(4) T =Nz \Vy(yell oy = 2) .2

PROPOSITION 2.16. Inferences according to the following schema are
LD, -derivable:
B, AT =C

A>B T =A>C

14 This is just an explicit fixed point construction.
15 Now that is different from the one in [20], p. 398, but hopefully no reason for
concern. Cf. also footnote 22 below.
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Proof.
[A/a] = [A/a] B,AI'=C
[A/a] — B,[A/a], A, T = C
[A/a] — B,[A/a'], T = C
[A/a] — B, = [A/a'] — C
aclll = ol eIT aell’,[A/a] — B,I' = o' €Il 0 ([A/a’] — O)
acll’'o([A/a] — B),I' = a’ eIl 0 ([A/a’] — C)
acll’'o([A/a] — B), I’ = \Jz(zell' o ([A/z] — C))
Va(zell'n([A/z] — B)),I' = \z(zell'o([A/z] — C))

ADB,I'=AD>C QED

REMARK 2.17. The point of the foregoing result: the formulation of IN°
in definition 4.4 below in terms of the weak implication D does not

make additional deductive power necessary when it comes to establishing
seN" = ¢'eN" (4.6i1 below).

PROPOSITION 2.18. The following is LDy -deducible:

(2.181) = Iell’;

(2.18i)  sell’ = s’ ell’;

(2.18iii)  sell’ = (s < I)ell’.

Proof. As regards 2.18i and 2.18ii cf. 134.3iii and 134.3iv in [20], p. 1825.

It must be clear though that these are indeed IiDy-deducible, i.e., no
Z-inference required.'® 2.18iii as for 2.14iii. QED

3. Z-inferences

As it stands, IT" doesn’t offer much of an advantage as against Z. This is
now going to change with the introduction of Z-inferences.

16 In [20], they were listed as LiD%—deduCible.
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DEFINITIONS 3.1. (1) An inference according to the schema

I' = seZ = A
I'=[A/s]

is called a Z-inference.!”

e formalized theory Ii is obtained from IID) by adding all Z-
2) The f lized th L‘D% b d f LD, by add 11 7Z
inferences.

In what follows I shall mostly consider “throttled” versions of LiD%.

DEFINITION 3.2. LiD)%rn is defined as LiD% with the restriction that a
LiD%["—deduction can contain at most n Z-inferences.

PRrROPOSITION 3.3. Inferences according to the following schemata are
LiD%-derivable with an increase of the Z-grade indicated on the right:

I =3I Fla] = §la’]

(3.31) : Y
sell', I = §s]
- LA = B[]  Aa] — Bla), A[a’] = Bla’]
(3.3ii) _ i1
sell’, I, A[s] = BJs]
r=3  gl=30" 3, 01T=C
(3.3iii) _ 41;
sell, I, 11 = C
i sell’, sell', ' = C
(3.31V) = +1;
sell',) '=C
o I
(3.3v) I = §[I] _ aell’, §la] = Fla'] .
sell', I = §s]

17 Z-inferences have been first introduced in [20], p. 392. I shall not here comment
on the meta-theoretical side of these inferences but only refer curious readers to [21],
section 119b, for a little bit of justification.
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Proof. Re 3.3i.

§le] = Flc]

celz Flx] = ' ehx Fla]

= §] = celz Flz] — ¢’ ehx Fla]
= Tehx§z] = Az(zehz §z] — 27 ez §lz)])

= Tehz F[z] A N\ z(zehx Flz] — 2" elx Fz]) Fls] = §ls]
+1
acZ = [Tehz Fz] A N\ z(zedz Flz] — 27 edx Fz])/a) aelz §[z] = F[s]

acZ, [Tehz Flx] AN z(zera §z] — 2" eda §[z])/a] — aerx Flz] = F[s]
acZ, Ny([Tey A \z(zey — z' ey)/a] — acy) = F[s]
acZoNy([TeyA Nz(zey — 2 ey)/a] — acy) = Fs]

sell', " = 3|s] .

Re 3.3ii. Essentially as for 3.3i. The point is to see that no cut (or inver-
sion) is required. Let & := Ax (™U[z] — B[x])

Ala] — [B/a),Ua'] = [B/a']
Ua] — [B/a] = Aa'] — [B/a']

A1) = B(I] cet = et
= A1) — B[] > cef—clet
= Teg = Nz(ze€ — 2" €€) Als] = Als]  Bls] = Bs]
> TeéANz(ze€ — 2 ef) A[s] — Bs], Als] = Bs]
seZ = [[cEMNz(zct — 2let)/s] e, Us] = B[s]

seZ,[TcéE NN\ z(ze€ — 2T e€)/s] — se€),Uls] = Bs]
seZ,Ny([Tey AN\ z(zey — 2 ey)/s] — sey),Uls] = Bs]
seZoAy(TeyAN\z(zey — 27 ey)/s] — sey),U[s] = Bls]
sell’, Als] = B[s] ’

Re 3.3iii. Essentially as for 3.3ii; left to the reader. Cf. also 4.7ii below.
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Re 3.3iv. This is a straightforward consequence of 3.3iii. Employ 2.18i
and 2.18ii:

cell’ = ' eI’ cell’ = ¢! eIl

= Jell' = Iell' cell',cell’ = ell’ncl ell’  sell, sell, I’ = C

= Jell'olell’  cell'ocell’ = fell'ocd ell’ sell'osell’, ' = C

— +1.
sell’,) ' = C
Re 3.3v. Employ 3.3iv and 3.3i:
aell’ = ol eIl'  aell’, §[a] = Fla]
aell’,acll’, §a] = acll’ 0F[a’]
= Iell' I =3[ aell’, Fla] = acll 0§’
= Tl 0F[]] acll’0§[a] = acll’ 0 F[a]
= +1.
sell’, " = §s] QED

REMARK 3.4. The reason for taking the detour via Z to get to IT should
become sufficiently clear by looking at the proof of 3.3i above. In view
of its obvious similarity to induction, I shall occasionally refer to it as
proto-induction.

PROPOSITION 3.5. The following holds:
(3.51)  IDyF = (IN*I)ell;
(3.51) IDZM F sell’ = (sM<s)ell.

Proof. Re 3.5i. This is an immediate consequence of 2.18iii.
Re 3.5ii. This is a straightforward application of 3.3i employing 2.9i:

= (cMfe)m? 1= (! mkel)
bell' = (b2 I)ell’ b= (cMfe) = (b 1) = (¢! Mk &)
bell', b= (cMe¢) = (bM* N ell o (br?x I) = (¢! 1k ¢])
beIl', b= (cM*¢) = (¢! mel)ell
bell'ob = (cM*¢) = (¢! M el)ell
= (IT*I)ell (e c)ell = (¢! M cl)ell

sell’ = (s s)ell . QED
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PROPOSITION 3.6. Inferences according to the following schemata are
I}D%-derivable with an increase of the Z-grade indicated on the right:

= A
(3.61) —
sell' = [A/s]
= A
(3.61i) ey
= [dA
A=B
(3.6iii) —— +1;
sell’,[A/s] = [B/s]
(k+1)[A] = B
(3.6iv) > ” 11
sell’)[A/sM* s] = [B/s]
= A B, Il =C
(3.6v) +1;
ADB,II=C
I'= A B, Il =C
(3.6vi) 12
ADBONI=C
A=B
(3.6vii) —_— j2;
0A = 0B
A B=C
(3.6viii) S —
0A,0B = 0C
2[A]= B
(3.6ix) =B iy
0A= 0B
k[A] = B
(3.6x) L +2;
0A = OB
O(sell’), ' = C
(3.6xi) (sell) .
sell'’, ' = C

Proof. Re 3.6i. This is a straightforward application of 3.3i employing
2.7ii:
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=A [A/a] = [A/a] = A
= [A/]] [A/a] = [A/a"] )
sell’ = [A/s] o

Re 3.6ii. Cf. 134.21ii in [21], p. 1834.
Re 3.6iii. Cf. 134.10ii in [21], p. 1830.
Re 3.6iv. I only show the case of k = 1. Employ 2.7iv:

[A/el,[A/e] = [AJend]  [B/cd = [B/d]
[A/cTc] — [B/c],[A/c],[A)c] = [B/c] AA=B
[A/cMc] — [B/c],[A/c],[A/c], A, A= [B/c]oB
AA=B [A/eMc] — [B/c],[A/c"],[A/c"] = [B/c]
[A/INI] = [B/I] [A/cM¢] — [B/c],[A/c! el = B/
sell’,[A/sMs| = [B/s]

+1.

Re 3.6v. Straightforward consequence of the definition of O and 3.6i. Cf.
135.20iv in [21], p. 1847.

Re 3.6vi. Essentially as for 3.6v only with an additional inference accord-
ing to schema 3.3iv. Left to the reader.

Re 3.6vii. Employ 3.3iv:

A= B
aell = acll  [A/d],acll = [Bja]
aell’ — [A/a],aell’,acIl’ = [B/d]
Nz(zell’ — [A/z]),acll’, acll = [B/d]
Nz (zell — [A/z]),aell’ = [B/a]
Az (zell’ — [A/z]) = acll’ — [B/d]
Az (zell’ — [A/z]) = Az (zell’ — [B/z])

+1
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Re 3.6viii. Employ 3.3iv:

A B=C

acll’ = acll’  [A/a),[B/a],acll’ = [C/a)

acll’ = acll’ [A/a),acIl’ — [B/al],aclIl’,acll’ = [C/a)
aell’ = [A/a],acll’ — [B/a],acll’, acIl’ = [C/d]

Az (zell — [A/z]), Nz (zell’ — [B/z]),acIl’,acll’ = [C/a))

Az(zell’ = [A/z]), Nz (zell’ — [B/x]),acIl’ = [C/a))
Az (zell’ = [A/z]), ANz (zell’ — [B/z]) = acll’ — [C/d]

Az (zell’ = [A/z]), Nz (zell’ — [B/z]) = \z(zell’ — [C/z])

+1

+1

Re 3.6ix. Employ 3.6iv and 3.3iii:'® Let Q := %, ell’'o (%1 1M *1)eﬁ

A A= B
[A/aMa),acll’ = [B/a)
bell' = bell’  b=anNa,[A/b],acll’ = [B/d]
bell’,b=aMa,bell’ — [A/b], acIl’ = [B/a]
bell’,b = aMa,0A, acll’ = [B/d]
bell'ob =aMa,0A,acll’ = [B/d]
(aMa)ell,0JA, acll’ = [B/a)
= Q[ Q= Q] acll’o(aMa)ell,JA = [B/d]
aell’,0A = [B/d]
OA = acIl’ — [B/d]
OA = OB '

+1

+1

+1

Re 3.6x. Proof by induction on k. Essentially as for 3.6ix; left to the
reader.

181 include this proof here because the one in [21], p. 1842, is flawed: some II
should be IT".
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Re 3.6xi. Employ 3.3ii:

= [ell’ cell’ = lell’
- = _ t1 v v +2 o
= O(I<IT) O(cell’) = O(c' eIT’) O(sell’), I = C
~ +1.
sell',; ' = C QED

4. Successor and induction

DEFINITIONS 4.1. (1) 0:=0.
(2) ' :=10,s7J.

REMARKS 4.2. (1) Note that this successor notion is an ‘exclusive’ one,
i.e., one formulated in terms of identity.

(2) The definition of the successor of a term s along the line of {s, {s}}
doesn’t lend itself to proving

s=t —-s=t

without induction. All that I was able to get is

seToteTos =t/ -s=t.
This is why I adopt the above notion of the successor which allows the
proof of 4.3vii without employing induction (and without employing any
structural rules as shown in the next proposition).
PROPOSITION 4.3. The following is LD -deducible:
(4.31) se0 =;
(4.3i1) = {{s}fes’;
(4.3il) & =0=;
(4.3iv)  {{sffet' = s=t;
(4.3v) =t =s=t;
(4.3vi) & =t'=s=t;
(4.3vil)  F[s], s =t' = F[t].

Proof. Re 4.3i.
1=

sehl =
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Re 4.3ii.
= {sJ) = s}y

= Ut = HOL 0P Vs = HsHt

= {stre{t{o}, of, s}
Re 4.3iii. Employ 4.3i:

= {s}y ={{s}}
= {{s7} = {0}, 0f v{{s}} = Hs}}
= {{sJy {10, 0, {{sTHY H{sfJe0 =
{{s}fes’ = {{s}}e0 =
{{slfes’ = {s}}e0 =
Nz(zes o zc0) =

Re 4.3iv. Cf. [21], 127.35iv, p. 1745.
Re 4.3v. Employ 4.3ii and 4.3iv:

= {{s}fes’ {Asffet' = s=t
{{stfes = {{sffet = s=t
{sffes’ « {{sffet' = s=t
s=t=s=t .
Re 4.3vi and 4.3vii. These are immediate consequences of 4.3v. QED

DEFINITION 4.4. N := Az Ay(Az(zey — 2'ey) D (0ey — xey)).r?

REMARKS 4.5. (1) N" is what I called an exclusive notion, e.g., in [21],
p- 1596, remark 116.6: it only contains the numerals 0,0’,0”, ... and noth-
ing else that may have the same numerical value but isn’t really the same
term, like, for instance, 0+0.2° This not only provides for the contractibil-
ity of wifs of the form seIN", but also for the possibility of proving a form
of induction.

19 Note the difference of the foregoing definition to that in [20], p. 400 (positioning
of “step” and “basis”™: this is to get the “basis” from the left to the right side of weak
implication).

20 This is the difference to Frege and also Quine. Needless to say, that for them
it is a confusion to make such a distinction and, thereby, to object to their conflation.
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(2) As an immediate consequence of 4.3v, one has
seN", s’ =t = teN".

PROPOSITION 4.6. The following is LD -deducible:

(4.61) = 0eN";

(4.6ii) seN" = s'eN".

Proof. Pretty trivial and for that reason left to the reader; but the point

to note is that 4.6ii does not require any Z-inference despite involving
weak implication. This is a straightforward consequence of 2.16. QED

As in the case of proto-induction, I provide a list of schemata for
derivable inferences together with an indication of how many Z-inferences
go into it.

PROPOSITION 4.7. Inferences according to the following schemata are
LiD%-derivable with an increase of the Z-grade indicated on the right:
I = §[0] Sla] = Fla']

(4.7i) +1;
seN", I" = Fs]
. I'=30] Fla =3l«] Fls|,I=C
(4.7i1) 41
seN", I 1l = C

I' = Fla,0] S[s,b] = Fla,b']

(4.7iii) 413
teN" = Fs, 1]
seN’ seN", ' = C
(4.7iv) 41
seN, I'=C
r 0 N !
. =30 0eN 3l = 3]
seN", I" = Fs]
) O(seN"), I'=C
(4.7vi) 44
seN, I'=C
I 0 k !
(4.7i) = §(0] [§a]] = Sla'] "

seN" = Fs]
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seN" = Fs, 0] k[§[s, a]] = F[s,d’] Sls,t], ' = C
(4.7viii) +9;
seN, teN, ' = C

I = §[0,0] = Fld’, 0] Sla,b] = Fla', V]
(4.7ix) ‘o
seN,teB = Fls, 1]

Proof. Re 4.7i. This is a straightforward consequence of the way N is
defined, employing 3.6v:

§la] = Fla']
aelr §lz] = a’ ez F[z] I' = 30 §ls| = §ls]
= aelz §[z] — d' ehz Fz] I' = 0eAzFlx]  serzFx] = Fs]
= A z(zeAx §[z] — 2’ Az Flx]) Oez Flx] — serz Flz], I’ = F[s]
N z(zehz F[z] — 2 ehz Fz]) D (0erx §lz] — serx Flz]), I’ = Fs] ’
Ny(N\z(zey — 2’ ey) D (0ey — sey)),I" = 3]
sehz Ny(N\z(zey — 2 ey) D (0ey — xey)), I = Fs]

Re 4.7ii. This is also a straightforward consequence of the way N° is
defined, employing 3.6v:

3] = 3o
aelr §z] = a’ ez F[z] I = §[0] Sls], I = C
= aelz F[z] — o' ehz F[z] I' = 0eAz Fz] serxF[z], I = C
= Az(zehz Fz] — 2 erx Flz]) OerxFz] — sedx Flz|, [, II = C
N z(zehz F[z] — 2 ez F[z]) D (0eAz F[z] — serz F[z]), [ [ = C o
Ny(Az(zey — 2'ey) D (0ey — sey)), I, 11 = C
seht Ny(\z(zey — 2/ ey) D (0ecy — xey)), [T = C
Re 4.7iii. Employ 4.7ii:
S[s, b] = Fla, b']
I' = §la,0] Nz §z, b = Fla, V'] Sls, t] = §ls, 1]
I' = Az gz, 0] Nz 3§z, 0] = Az Fz, V] Nz 3§z, t] = F[s, t]
teN", I' = Fls, t]

+1.
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Re 4.7iv. As for 3.3iv only with 4.7ii instead of 3.3iii.

Re 4.7v. As for 3.3v only with 4.7iv and 4.7ii instead of 3.3v and 3.3iii.
Re 4.7vi. As for 3.6xi only with 4.7iv and 4.7ii instead of 3.3v and 3.3iii.
Re 4.7vii. Employ 3.6x, 4.7iv and 3.6v with an inference according to
4.7ii:

= §[0] k[§[b]] = §[v'] St = St]
~ogo Osbl=o0s0] 03[ = 3l
teN" = 1] o

Re 4.7viii. Employ 3.6vii, 4.7vi, 3.6x and 4.7ii:

seN" = Fls, 0]
O(GeN) = 05,0 k[3]sa]] = s,/ 35,1, = C
seN = 03[5,0]  Ogfs,a = 0gsa] O3 i.0 = C
seN teN" . I'= C

+1.

Re 4.7ix. Let 8 be a fixed point: 8 = Az(z =0V \Jy(yef oy = x)). First,
the following deduction is in IIDy:

Sla,b] = §la', V]
beB, Ny(yeB — §la,y]) = §la’, V]
beB,b =c, ANylyepf — Fla,y]) = §la', ]
= Fld’, 0] befob =c, NylyeB — Fla,y]) = Jld’, ]
c=0=3d,d VylyeBoy =c), Ay(yes — 3la.y]) = §ld'. ]
c=0VVylyeboy =c), Nylyeps — Fla,y]) = §ld’, ]
ceB, Ny(yep — Sla,y]) = 3la’, (]
Ny(yep — Bla,y]) = cef — 3ld', (]
Ny(yeB — Blay]) = Ay(yep — Sla’,y])

The next step is to establish the following, employing one Z-inference:
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acfl = acf =ad =d

aef = acfoa =d
acf = \y(yeBoy =d’)
acf=ad =0V \ylyeBoy =ad)
= 0ep acfl=adepB
teN" = tep o Sls, t] = §s, 1]
tef — Fls, t], teN" = F[s, t]
Ny(yeB — 3ls,y]), teN" = F[s, t]3s, )

Finally an inference according to 4.7ii. Let A%y §[y] := Az (yefB — Fy])
to save space:

I' = §[0,0]
r=Ny30,5] Ay3la,yl = ANy3la 9l Ny3ls yl,teN = F[s, ]
—+1.
seN,teN", I" = F[s, ] QED

REMARKS 4.8. (1) 4.7i is a straightforward consequence of the way N is
defined and is just the usual second order way of dealing with induction
which is actually all that is needed in the classical case. Without con-
traction, however, this is not yet quite sufficient for proving the relevant
properties of primitive recursive functions and this is why the further
schemata are introduced.

(2) 4.7ii is designed to avoid cuts that would become necessary if 4.71 were
employed in the case, e.g., of the totality proofs below.

(3) 4.7iii is discussed in [13], p.348, under the label Erweiterung des
Induktionsschemas (“extension of the schema of induction”) and is only
listed here for the sake of interest.

(4) 4.7v deals with the situation that the induction step in turn depends
on the free variable having only values in IN".

(5) 4.7vii deals with the situation that the “induction step” requires the
induction hypothesis more than once. Suppose, for instance, that all we
can get is

= §[0] and 2[F[a] = Fld'].

Then, in order to get to = §[3], we need the induction basis 23-times:
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830 = 4[3[]], ARBAI = 2[321], 232l = 33
That’s what is here being accounted for by the necessity notion:
k[§la]] = §la]
OFla) = 0Fla]
One might think of defining
N* = Ar Ay(A=([zey]? — 2'ey) S (0ey — zey)

in order to have an induction that tolerates two assumptions in the in-
duction step. This would give

r=30 K3l = 8l
se[N]* = §s]
but not se N* = s’ ¢ N*, which makes the whole thing useless.
(6) As 4.7ii, 4.7viii is designed to avoid cuts that would become necessary
if 4.71 were employed.
(7) 4.7ix is a “double induction” without “nesting”. My reason to include
it here is that, unlike ‘“nested double induction”, it is perfectly LiD%-

derivable. The following “nested schema of induction” (without side wffs)
is discussed in [13], p. 352 (verschrinktes Induktionsschema):

= S[Oa b] S[av tl] = S[a/a O] S[av tQ]a S[a/a b] = S[a/a b/]
seN,teN,I'II, = = s, 1] '

This does not only require two inductions, but also a side wff in the first
induction which, in the dialectical case, can only be accommodated for by
introducing a necessity operator [ which spoils the classical reduction:

)

Sla, t1] = F[a’, 0] Sla, ta], Fla’,b] = Fla', V']
Ny3la,yl = 3la'.0]  Ay3Fla,y],3a’, 0] = F[a', V]
= 0, b] Ny Sla,y] = la', ]
= Ay 3[0,0] Ay 3Sla,y] = Ay Sl y]
= Ny ls.y]
= s, t] '

How this can be treated will be the topic of another paper, following the
approach of my [23], section 5, pp. 136-159.
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PROPOSITION 4.9. IIDZl1 - s'eN" = seN".

Proof. Re 4.9. This is the reversal of 4.6ii; it requires a Z-inference. Let
MN:=0=x% VVylyeN oy = 1) and show = N[0], N[¢] = N[¢'], and
MN[s'] = seN":

=0=0

=0=0V\y@yeNoy =0)
beN" b =c= bV eNab' =
=0eN ¢c=0=0=¢ beN", V' =c= Vy(yeN' oy =¢)
=0=0eNo0 =¢ beNob =c= \y(yeN oy =c)
c=0=\VyyeNoy =) VyyeNoy =c)= VylyeN oy =¢)
c=0VVy(yeN oy =c)= Vy(yeN oy =¢)

c=0V\VyeNoy =c)=cd =0V (VylyeNoy =¢)
Now employ 4.3iii. and 4.3v:

beN" b =5 = seN°

beN' ol =5’ = seN’
=0= VylyeN°' oy =5') = seN°
§=0VVy@yeNoy =5)=seN" QED

REMARK 4.10. The successor operation from definition 4.1 (2) can be
turned into a successor function more in tune with the other definitions
of functions that are to come:

S = Aryas (22 = 2)) .

Obviously, S[t] = ¢’ would then be IIDy-deducible. Due to the exclusive
character of N°, however, se N” — S[s] e N" would not hold, only se N —
S[s]eN, where N is defined as in 5.3 below.

5. Predecessor

The predecessor function can be defined without employing the fixed point
property.

DEFINITION 5.1. pd :=Azy((z =0Ay=0)V\z(z =z0z=y)).
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PROPOSITION 5.2. The following is TIDy-deducible:
(5.21) = pd[0] = 0;
(5.2ii)  aes,{s',bfepd = acb;
(5.2iii) =15, sJ;
(5.2iv) = pd[s'] = s.
Proof. Re 5.2i
=0=0 =0=0
=0=0A0=0
=(0=0A0=0)V\Vz(z’=002z=0)
= {0,0¥epd a0 = acs
{0,07epd — a€0 = acs
Av({0,jepd — acy) = acs
aepd]0] = a€0 ae0 = aepd]0]

= pd[0] =0
Re 5.2ii. Employ 4.3ii and 4.3i:

a€s,s =b=ach

= {{sffes’ {{sffe0= acs,c=s,c=b=qaeb

{{s¥fes’ = {{sffe0=> acs,d =s',c=b=ach

s =0= acs,d =s'oc=b=ach
§=0Ab=0= aes,\[z(z' =5 0z="0b) = acbh

aes, (s =0ANb=0)VVz(z' =s02=0) = ach

aes, (s’ byepd = ach

Re 5.2iii.
=5 =4 =s5=35

/ /
=S =s08s=Ss8

= Vz(z'=snz=3)
= (s =0As=0)VVz(z' =s02=25)
= (s, sjepd

73
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Re 5.2iv. Employ 5.2iii and 5.2ii:

={s',sfepd  aes= aes aes,{s',bfepd = acb
{s',sjepd — aes = aes acs={s',bfepd — ach
Ay((s' yjepd — aey) = acs  aes= A\y((s',yjepd — aey)
aecpd[s'] = aes aes = acpd[s]
= pd[s'] = " QED

Next comes the totality of the predecessor function. It will be obvious
that totality can’t hold for the predecessor function in the sense that it
does for the successor operation as established in 4.6i: pd[s] just isn’t
in N°, no matter what its numerical value.?! So in order to be able to
establish some sort of totality we will have to shift to an inclusive notion
of natural numbers.

DEFINITION 5.3. N := Az \/y(yeN oz = y) .22

PROPOSITION 5.4. The following is IIDy-deducible:
(5.4i) = 0eN"A pd[0]eN;
(5.4ii))  ceN A pd[c]eN = /eN" A pd[c] eN;
(5.4ii1))  pdfa]eNAaeN";s =a = pd[s]eN.
Proof. Re 5.4i. Employ 5.2i:

= 0eN’ = pd[0] =0

= 0N opd[0] =0
= Vy(yeN opd[0] = y)
= 0eN’ = pd[0]eN
= 0eN° A pd[0]eN

21 Cf. remark 4.5 (1) above.

221n [21], p. 1881, definition 136.48, T introduced a notion of N that involved (]
and in that way provided for more than just one substitution. This, however, is not
needed in the present context and since it is likely to be the source of some increase of

Z-inferences we may well stick to a more restricted notion — as actually in the case
of I1.
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Re 5.4ii. Employ 5.2iv:
ceN’ = ceN° = pd[d]=c¢
ceN’ = ceNopd[d] =¢

ceN' = \y(yeN opd[c] =y)

ceN" = eN’ ceN’ = pd[d']eN

ceN° = 'eN A pd[d]eN
ceN° A pd[c]eN = ¢ eN° A pd[d]eN

Re 5.4iii.
beN’, pd[s] =b=beN opd[s] =b

beN', pd[s] = b= Vy(yeN opd[s] =)
beN", pd[s] = b= pd[s]eN
beN", pda] = b,s = a = pd[s]eN
beN opda] =b,s =a = pd[s]eN
Vy(yeN'opd[a] =y),s = a = pd[s]eN
pdfa]eN, s =a = pd[s]eN
aeN° A pdla]eN,s = a = pd[s]eN QED

PROPOSITION 5.5. IIDZ1 | seN = pd[[s]eN.

Proof. Employ 5.4i-5.4iii with an induction inference according to 4.7ii
and continue as follows:

aeN",s =a= pd[s]eN
aeN°'os =a= pd[s]eN
Vy(yeNos=y) = pd[s]eN - QED

6. Recursion equations for addition
PROPOSITION 6.1. There exists a term A such that:
LDy - A= Azqz013 ((xk2 =0Az5=21)V
V1 V2 Vs (yr = z10ys = 22 0y5 = 230{{y1, y2), ysje A) -



76 UWE PETERSEN

Proof. This is an immediate consequence of the fixed-point property.
QED

CONVENTIONS 6.2. (1) The following abbreviation is introduced to sim-
plify presentation:
As = Aegxg (e =0 A 23 =38)V
Vy1 Vya (y1 = 22095 = 23 0{(s, y2, ysfe A) .

The full definition is only really needed in the proof of 6.7ii below.
(2) In order to save space in presentations, I shall occasionally use the
following abbreviations:

basa [t,r] for t=0Ar=s,and

stpa,[t,r] for Vyi Vya () =toys = rolls,yf,y2jeA).
PROPOSITION 6.3. The following is Dy -deducible:
(6.31)  basa.[s',7] =;
(6.3i1)  stpa,[0,r] = .

Proof. Re 6.3i.
s=0=

s =0Ar=s5=

basa,[s',r] =
Re 6.3ii.
4=0=

/ /
4 =0,¢5 =r1c1,cafe As =

¢t =0o0c, =roler,cafe A =

Vi Ve (= 00yh = rolys, yofe ds) = QED

PROPOSITION 6.4. The following is Dy -deducible:
(641) 81 = 89,11 = tg, = 7”2,??81, tly, T‘1>?€~A = r<(<82, tgy, 7‘256./4;
(6.4ii)  (t,rjeAs & (s, t),r)eA.

Proof. This is a straightforward consequence of the way A and A, are
defined. QED



INDUCTION AND RECURSION IN A RESOURCE CONSCIOUS LOGIC 77

PROPOSITION 6.5. Inferences according to the following schema are TiDy-
derivable:

d=nrtcfeds, ' = C
stpa [t ], = C '
Proof. Employ 6.4i:
d=rs,t),cje A, ' = C
b=t =nrsbf,cfe A, ' = C
b=t =rsbf,cfe A, T = C
bV =tod =ro{(sbf,cfe A, " = C
Vi Ve (0 =t oyh = rolls,pn),yeje A), I = C QED

DEFINITION 6.6. s+t := A,[t] . I shall use A, [t] and s+t interchangeably.

The first thing to establish about this definition is that it is substitu-
tionally transparent.

PROPOSITION 6.7. The following is TIDy-deducible:
(6.7) s=t=>r+s=r-+t;

(6.71) s=t=s+r=t+r.

Proof. Re 6.7i.

b=ay)=b=ay) Tlai,as)eA, = {a1,a2fe A,

s=tt=a)=s=a] b=ahla,afe A = b=ajolar,azfecA,

s=t,t=al,b=a}{a1,a2je A, = s =dajob=a,olar,asje A,

s=1t,t= all7b = a127(<a17GQ>76AT = Stp.Ar[S?b]

s=t,t=ajob=a,olal,asje A, = stpa,[s,b]

)

s=1,stpa, [t7 b] = slpa, [87 b]
s =1, bas 4, [t,b] = bas 4, [s,b] s=t,stpa,[t,b] = stpa,[s,b]

s=t,bas 4, [t,b] = bas ., [s,b] Vstpa,[s,b] s=t,stpa,[t,b] = basa,[s,b]V stpa,[s,b]

s=1t,bas,[t,b] = {s,bfe Ar s=t,stpa,[t,b] = {s,bfc A,

s =t,bas4,[s,b] V stpa,[t,b] = {s,bf € Ar

s=1t,{t,bje Ar = (s,bje Ar
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Re 6.7ii. First:

r=0=r=0 s=t,b=t=b=s

s=t,r=0b=t=r=00b=s

s=t,r=0,b=t= (r=00b=3)V stpals,r,b]
s=t,r=0,b=t={s,rf,bjecA
s =t baslt,r,b] = Ws,rf,ble A

Next:

s=a1=>s=aj r:a'Q:>s:a1 b:a_%:>b:a.'3

s=a1,r=a3,b=ay=>s=a10r=a,0b=a} a1,a2f,a3fe A= {a1,a2f,a3jc A

s=a1,r =a5,b=a},{a1,a2),a3f€ A= s=a10r =ah0b=a,0a1,a2),a3fc A

s=a1,r = ah,b=aj5,Ta1,a2f,a3je A = stpals,r,b|

s=t,t=ua1,r = ahb=a%,Wa1,asl,a3je. A= stpals,r,b]

s=tt=a1,r =ah,b=a%,{a1,az2),a3feA = bas4[s,r,b] V stpa[s,r,b]

s=t,t=a1,r = a5, b=a%,Na1,as),a3je A = {{s,r},bfc A

s=tt=a10r=ay0b=a,0a1,a2),a3jc A= {{s,rf,bfc A

s =6,V Vy2 Vs (t = 107 = 4 0b = 3, 0Ty, e, s e A) = (s r),bje A
Finish as follows:
s =t, basalt,r,b] = {{s,7),bje A s=t,stpalt,r,b] = {s,rf,bje A
s =t, basalt,r,b] V stpalt,r,b] = {{s,rf,bje A
s =t,{{t,75,0fe A = s, 7, bfe A ' QED

PROPOSITION 6.8. The following is LDy -deducible:

(6.81) =10,s)eAs;
(6.8i1) T, rjeds =, r'feA,.

Proof. Re 6.8i. Almost trivial; left to the reader.
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Re 6.8ii.
=t =t =7 =7 t,rie As = Ut,rfe A,
t,rieAs =t =t or =r'olt,rfe A
{t,rje As = Vi Vya (y1 =t/ oys = 7' o{ys, yaje As)
t,rfeAs = (' =001 =5)V Vi1 Vyz (yy =t oyh =1 0y, y2fe Ay)
trjeAs = 1" A QED

PROPOSITION 6.9. The following is LD -deducible:
(6.91) =s5+0=s;

(6.9ii) =10,s+0jeA;.

Proof. Re 6.9i. Employ 6.8i and 6.3ii:?3

acs,s=b= acb

aes,0=0As=b=aecb stps[0,b] =

acs,bas,[0,0]V stpa,[0,b] = acd

=10,sfe A, aes=aes aes,{0,bje As = aeb
{0,sje As — acs = acs acs =10,bje Ay — ach
Ny({0,yfe Ay — acy) = aes acs = ANy(0,yfe As — aey)
ac(s+0)=aes acs = ac(s+0)
=>s+0=s '

Re 6.9ii. Employ 6.9i:
=0=0 =s=54+0

=0=0As=s5+4+0
=0=0As=s5+0)VVy1Vy2 (v) =00y, =bolys,y2je As)
= 10,5+ 0fe A, 'QED

23 Note that due to the fixed point definition of addition no Z-inference is needed
here, in contrast to the classical approach as pursued in [21], p.1889: proposition
137.13 requires an inference according to proposition 137.10 on p. 1887, and thereby a
Z-inference.
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PROPOSITION 6.10. The following is IiDy-deducible:

(6.101) {t,s +tfeAs,ac(s+t') = ae(s+1);

(6.10i1)  wnit, As],{t,s +tfe As,ae(s+t) = ae(s+t');
(6.10ii1)  wnilt, As],{t, s +tfe A = s+t = (s+t);
(6.10iv)  unilt, As],2[{t,s + tje As] = W', s+ t'fe As.

Proof. Re 6.10i. As usual, this direction is almost trivial in view of how
application is defined. Employ 6.8ii:

{t,s +tfeAds =, (s+ 1) TeAs ac(s+t) =ae(s+t)
(s +tjeAs, U, (s+t)JeAs = ae(s+t) = ae(s+t)
t,s+tje A, Ny((t,y)e As — acy) = ae(s+t)

{t,s+tjeAs,ac(s+t') = ae(s+1t) '

Re 6.10ii. This is the direction which requires uniqueness. Employ 6.11iv:

(U, s+tfeAhs,(t,c2fe As = (t, s +tJe As O, cafeAs s+t=ca,ac(s+t) = acd

U, s+tfe AsOlt, cafe As — s+t =c2,{t,s+teAs,ac(s+1t),{t,cofe As = aed)

unilt, As],{t,s + tfe As,ae (s +t)',{t,cafe As = aech

unift, As], {t, s +tfe As,ae (s +t),c1 =t,ch =b,{c1,caf€As = acbd

unilt, As), (t,s + tfe As,ac (s +t), ¢y =t',ch = b,{c1,caf e As = ach

unilt, As],{t, s + te As,ae (s + 1), ¢) =t 0chy =bO%c1,cfe As = acb

basa,[t',b] = unift, As],{t,s + tfe As,ae (s + t)’, stpa, [t',b] = acb

unift, As],{t,s + tfe As,ac (s +t)’, basa,[t',b] V stpa,[t',b] = acb

unilt, As],{t,s + tfe As,ac (s + 1), {t',bfc As = acb

unift, As],{t, s + tfe As,ac (s +t) = ', bje As — acbd

unilt, As), {t, s + tfe As,ac (s +t) = Ay, yfe As — acy)

unilt, As],{t,s + tfe As,ae (s +t) = aec(s+1t)
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Re 6.10iii. Employ 6.10i and 6.10ii:

{t,s+tfeAs,ac(s+t)=>ac(s+t) unilt,As],{t,s+tfe As,ac(s+t) =ac(s+t)

unift, As],{t,s +tie As = s+t = (s + t)’

Re 6.10iv. Employ 6.10iii:

unilt, As], t, s +tfeds = (s+t) = s+t {t,s+tjeds = {t,s +tfeAs

=t =t unilt, A],2[{t, s +tfe ] = (s+1) =s+t 0, s+ tfeAs

unift, As], 2[{t, s +tfeAs] =t =t 0(s+t) = s+t 0{t,s +tfeAs
unilt, As], 2[(t, s + te As] = Vy1 Vyz (¥) =t 0ys = s+t 0ly1, y2f e As)
uni[t, As], 2[{t, s + t§ e As] = basa,[t',s +t']V stpa,[t’,s + 1]

unift, As], 2[{t, s + t§ e As] = {t', s +t'Ve As . QED

PROPOSITION 6.11. The following is IIDy-deducible:
6.11i) 0,7r/e As = s =1,
6.11ii) = unif0, As];

6.11iii)  unilt, As], stpa.[s,a’, c1], stpa.[s,a’,ca] = c1 = ca;

(
(
(
(6.11iv)  unilt, As) = uni[t’, As] .

Proof. Re 6.11i. Almost trivial, but nevertheless .. .. Employ 6.3ii:

S=r=s=r

0=0As=r=s=1r ViV, =00y,=roly,yjclAs)=>s=r
(0=00r=35)VVy1 Vy2(y1 =00ys =70{y1,y2c As) = s =7
0,rfe Ay =>s=r '

Re 6.11ii. Variation of 6.11i; left to the reader.

Re 6.11iii. The essential step is that of the ‘reversibility’ of the successor
relation, in the sense of 4.3vii, which is being applied twice in the following
deduction. This is where the new definition of the successor with 2.2 above
comes in:
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{a,baje As,(a,bife A = {a,b1je As 0la, bafe As by = by = by, = b}
{a,b1je As 0(t,bafe As — by = bo, {t, bafe A, {t, b1 fe Ag = by = b}
unilt, As], (t,baje As, {t,b1Je As = by = 1)
unift, Ag],{t,bafe As, a1 = t, b} = ca,{a1,b1)e As = by, = co
unilt, As), {t, bafe As, a) = t',b] = co,la1,b1je As = by = c2
unilt, As], (t,baV e As, stpa,[t', ca] = by = co

unilt, As], b1 = t,by = c1,{b1,baf e As, stpa,[t',ca] = c1 = o

unilt, Ag], by = ', b5 = c1,1b1,bafe Ag, stpa,[t',c2] = c1 = ¢

unilt, As), by = t' oby = c101by,bafe A, stpa_ [t c2] = c1 = c2

unilt, As], stpa,[t',c1], stpa [t c2] = c1 = ca
Re 6.11iv. Employ 6.11iii:

basa,[t',ca] =  unilt, As], stpa,[t',c1], stpa,[t',c2] = c1 = c2

basa, [t c1] =  unilt, As], stpa, [t c1], basa, [t co] V stpa,[t', ca] = c1 = ¢2

unift, As], basa, [t',c1] V stpa, [t c1], basa, [t', co] V stpa,[t', ca] = c1 = e2

unilt, As), 1t ey e As, {t', cafe As = 1 = e2

unilt, As] = uni[t’, A . QED
REMARK 6.12. Two separate inductions would now do the job; a first one
(according to 4.71) to yield teN" = unils, ¢, A] :
1. = unil0, Ay] 6.11ii
2. unib, A] = unilb', A 6.11iv

and a second one (according to 4.7vii, because of the double occurrence
of the antecedent formula) to yield teN" = {{s,t},s + t]fe A:

3. =10,s+0feA, 6.9ii

5. beN",2[(b, s+ bfe As] = ', s +b'fe A

where the last one is obtained from 6.10iv

beN" = unifs, b, A]  unils, b, A],2[(b, s + bje A;] = ', s + V' fe A
beN",2[1b,s + bfe A] = W', s+ bje A

cut .
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Altogether, this is not the most economical way to obtain the recursion
equations for addition and this is why I combine the two inductions into
one which saves considerably on Z-inferences.
PROPOSITION 6.13. The following is IIDy-deducible:
(6.131) = uni[0, As] 010, s + 0je A ;
(6.1311)  2[unilt, As|olt, s + t)e As] = uni[t’, As]olt’, s + t'je As .
Proof. Re 6.13i. Employ 6.11ii and 6.9ii:
= unil0, As] = 10,5+ 0je A,
= uni[0, A,]0{0,s + 0fe A,
Re 6.13ii. Employ 6.11iv and 6.10iv:
unift, As] = uni[t’, A unilt, As], 2[(t, s + tfe As] = (t', s + t'Se As
2lunilt, As]], 2[(t, s + tfe As] = uni[t’, A ] ot s + t'Je As
2Aunilt, A olt, s + tfe A = uni[t, Ao, s +t'fe A, QD

Everything so far has been IIDy-deducible. Now come the final steps,
the ones that involve Z-inferences, be that in the form of a “modal” infer-
ence or an induction.

PROPOSITION 6.14. IDZ4 - teN = s+t = (s +1t) .

Proof. Employ 6.13i and 6.13ii with an inference according to schema
4.7vii. QED

REMARKS 6.15. (1) One last time I want to spell out an induction in
terms of higher order logic, i.e., N°. Employ 6.13ii, 6.131 and 6.10iii:

unift, As], {t, s + tfeAs = s+t = (s +t)

LDy
: ) unit, AJolt, s +tfeds = s+t = (s+1t)
. LID%h
bet =b'et : O(unift, As]olt,s +tfeds) = s+t = (s+ 1)
=bef —bet :>be£ tetE=> s+t =(s+1t)
= Nz(ze€ — 2'€€) 0cé wteE=s+t' =(s+t)

+1

Nz((z€8) = (2'€€)) D ((0€8) — (teg)) = s +t' = (s + 1)’
teN' = s+t =(s+1t)

)



84 UWE PETERSEN

where & := A O (unifz, As] olz, s + zfe As).

(2) Tt doesn’t need much to see that the foregoing approach to proving the
recursion equations for addition can be extended to all primitive recursive
functions, i.e., the recursion equations for all primitive recursive function
are provable in I}D%F‘*. The approach to establishing the recursion equa-
tions for addition can be divided into four blocks:

(1) =10,s)eAs;
{t,rfe As = ', r'feAs.

(2) = unil0, As] ;
unilt, As] = unilt', As] .

B)  wnilt, Al T AT A = AL[E] = A
(4) = unil0, As[0]] ;
unilt, As), 2[(t, As[t]Se As] = 1, As[t'] e As .

This approach fits to all primitive-recursive functions. If h, is a one-place
primitive recursive function defined in terms of another one-place function
f and a two-place function g5 as the fixed point

hs = )\ZElIQ (.Il =0A T = f[[S]]) V
Vi V2 (i = 2109s[s,42] = 22 0{y1, y2f e hs)
then the essential ingredients for obtaining the recursion equations are:
(1) =10, flslfehs;
{t,rjehs = ', gs[t,r]fehs.
(2) = uni[0, hs ;
unilt, hs] = unilt’, hs).

(3) unift, hs), (t, hs[t]fe hs = hs[t'] = gst, hs[t]] -
(4) = uni[0, hs[0]];

unilt, hs), 2[t, hs[t]fe hs) = W', hs[t']j e hs -

I leave it at these hints trusting that they are sufficient to support my
claim that the approach extends to all primitive-recursive functions.



INDUCTION AND RECURSION IN A RESOURCE CONSCIOUS LOGIC 85
7. Totality of addition

As with the predecessor function, totality can’t hold for addition in the
sense that it does for the successor operation: s + ¢ just won’t be in N°,
no matter what its numerical value. But that’s what the notion of N
(definition 5.3 above) has been introduced for: if seN and teN then
(s+t)eN.

REMARK 7.1. It should be clear that the totality of addition can be
established on the basis of the recursion equations as obtained in 6.9i
and 6.14 above employing just another simple induction:

beN = (s+0b) =s+¥

ceN = eN" beN,c=s+b=>c =s+1V

beN,ceN,c=s+b=ceNod =s+1

seN"=seN° =s=5+0 beN,ceN'Ooc=s+b=cecNoc =s+1¥

seN"=s5eN'Oos=s5+0 beN",ceN'oc=s5+b= (s+b)eN
seN = (s+0)eN beN", (s +b)eN = (s +b)eN

seN"teN" = (s+1t)eN
And then use this for a cut in the inference marked 1 below:

c=a+b=c=a+b

ceN°'=ceN" a=s,b=t,c=s+b=>c=s5+1t

ceNJa=s,b=t,c=s5+b=ceN'oc=s+t

a=s,b=t,ceN'oc=s+b=ceN'oc=s+t

a=sb=tceNoc=a+b= (s+t)eN

seN"teN = (s+t)eN a=sb=t(a+b)eN= (s+t)eN

aeN",beNa=s,b=t= (s+t)eN

aceN'oDa=s5,beN'O0b=1t= (s+1t)eN

seN,teN = (s+t)eN

The point is to get around this cut and the additional induction.
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PROPOSITION 7.2. The following is IIDy-deducible:

(7.21)) seN = (s+0)eN;

(7.2i1)  wnilt, As], ¢, A[t]fe As, (s + 1) eN) = (s +¢')eN.

Proof. Re 7.2i. Employ 6.9i:

seN"= seN° =(s+0)=s

seN"=seN'o(s+0)=s
seN" = Vy(yeN'o(s+0)=1y)
seN = (s+0)eN .

Re 7.2ii. Employ 6.14:

unilt, Ag],{t,s + tje Ay = s+t = (s +t)
beN" = b eN"  unilt, As],{t,s + tfe As,s+t=b=s+t' =V

uni[t, As], {t,s + tfe As,beN" s+t =b=becNas+t =V
unift, Ag],(t,s + tje A, beN", s+t =b= \Jy (yeN' os+t' =y)

teN,beN" s+t=0b= (s+1t')eN
unift, As),{t,s +tje As,beN'os+t=b= (s+t')eN
unilt, As], {t,s + tfe As,Vy (yeN'os +t =y) = (s +t')eN
unilt, As],{t, s + tje As, (s + t)eN = (s +t')eN 'QED

PROPOSITION 7.3. The following is LDy -deducible:

(7.31) seN" = unil0, As]010,s + 0e A;0(s +0)eN;
(7.311)  3lunift, As]olt,s +tje Aso(s +t)eN| =;
unift', As] o, s +t'fe Aso(s+t')eN;
(7.3ii1)  wni[b, Ag]o(b,a+bje A,o(a+b)eN),s=a,t =b=
(s+t)eN.

Proof. Re 7.3i. Conjunction of 6.13i and 7.2i.
Re 7.3ii. Conjunction of 6.13ii and 7.2ii.
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Re 7.3iii. Employ 6.7i and 6.7ii:
s=a,t=b= (s+t)=(a+Db)
ceN" = ceN° s=a,t=b(a+b)=c=>(s+t)=c

ceN s=a,t=0b,(a+b)=c=ceNuo(s+t)=c
ceN,s=a,t=b,(a+b)=c=\yyeNo(s+t)=y)
ceN,s=a,t=0b,(a+b)=c= (s+t)eN

ceN'o(a+b)=c,s=a,t=b=(s+t)eN
Vy(yeN'o(a+b)=y),s=a,t=b= (s+1t)eN
(a+b)eN,s=a,t=b= (s+1t)eN
unifb, A,],{b,a +bje Ag, (a +b)eN,s=a,t =b= (s+t)eN

unifb, Ay olb,a+bfe Ayo(a+b)eN,s=a,t =b= (s+1)eN
QED

PROPOSITION 7.4. IIDZlo - seN,teN = (s +t)eN.

Proof. This is an immediate consequence of 7.3i, 7.3ii, and 7.3iii by means
of 4.7viii. QED

8. Multiplication

The schema of the foregoing two sections will now be applied to multi-
plication. In view of the similarity of the approach, I go fairly quickly
through the relevant steps.

PROPOSITION 8.1. There exists a term M such that:

IJiD)\ FM= )\$1,’E2{L‘3(((E2 =0A T3 = 0) \Vi
V1 Vy2 Vyz (y1 = x10yh = z20ys +y1 = 230y, o), ysje M)).

Proof. As usual, this is an immediate consequence of the fixed-point
property. QED
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CONVENTIONS 8.2. (1) As in the case of addition I introduce an abbre-
viation to simplify presentation:

M = Apazs (22 =0A23 =0)V
V2 Vys (5 = 2 0y3 + y1 = 230{(s, y2), ysje M)) .

As before, the full definition is only really needed in the proof of one of
the substitution properties below.
(2) In order to save space in presentations, I shall occasionally use the
following abbreviations:

basa,[t,r] for t=0A7r=0, and

stom [t ] for Vy2 Vys(ya =toyz +s =ro{(s, y2), ysfe M).

PROPOSITION 8.3. The following is LDy -deducible:
(8.3i)  basa, |8, 7] =;
(8.3i1)  stpam,[0,7] = .

Proof. As for 6.3i and 6.3ii; left to the reader. QED

PROPOSITION 8.4. The following is LDy -deducible:

(8.4i)  s1= 82,01 =ta,11 =72, {{s1, 1], 1 fe M = ({52, L), r2fe M;
(8.4ii) = {t,rfe M, & (s, t],rfe M.

Proof. As for 6.7. Left to the reader. QED

PROPOSITION 8.5. Inferences according to the following schema are IDy -
derivable:

ro=r1+s,{t,r1je Mg, ' = C
stom [t 2], I = C '

Proof. As for 6.5; left to the reader. QED
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DEFINITION 8.6. s-t:= M[t]. I shall use M;[t] and (s-t) interchange-
ably.

As for the case of addition, the first thing to establish about this
definition is that it is substitutionally transparent.

PROPOSITION 8.7. The following is TIDy-deducible:
(8.7) s=t=s-r=t-r;
(8.7i) s=t=r-s=r-t.

Proof. As for 6.7. Left to the reader. QED

PROPOSITION 8.8. The following is TIDy-deducible:
(8.8) = 10,0§eM,;
(8.8il)  {t,rfe Mg =Tt',r+ sfeM,.

Proof. As for 6.8; left to the reader. QED

PROPOSITION 8.9. The following is TIDy-deducible:
(8.9i) =s5-0=0;
(8.9ii) =10,s-0je M.

Proof. As for 6.9; left to the reader. QED

PROPOSITION 8.10. The following is IIDy-deducible:

(8.101) {t,s-tfeMs,ae(s-t') = ae(s-t+s);

(8.10i1)  wnilt, M],{t,s-tje Ms,ae(s-t+s) = ae(s-t');
(8.10iii)  wnilt, M4, {t,s - tJeMs=s-t' =s-t+s;
(8.10iv)  wnilt, Ms],2[(t,s - tfe M) = (', s - t'fe M.

Proof. Re 8.10i. This follows directly from 8.8ii in the usual way.
Re 8.10ii. For the nonce, let M(s, ¢, ¢] stand for {¢,s-tJe M olt, cfe M :



90 UWE PETERSEN
ac(c+s)=aec(c+s)
{t,s-tje M, (t,cfe My = M(s,t,c] s-t=c,ac(s-t+s)=ac(c+s)
Ms,t,c] = s -t=c,t,s - t)e Ms,ae(s-t+s),{t,cfe Ms = ae(c+s)
uni[s,t, M],{t, s - tie Mg, ae(s -t +s),{t,cfe My = ae(c+s)
unils,t, M],{t,s - tje Ms,ae(s-t+s),b=c+s,{t,cfe My = acb
unils, t, M],t, s - tfe Ms,ae(s -t +s),{t',bfe My = aeb
unils, t, M],{t,s - tfe Ms,ae(s -t +s) = {t',bfe My — ach
uni[s, t, M],{t, s - tfe Ms,ae(s-t+s) = ANy({t',yje Ms — acy)
unils, t, M],t,s - tfe Ms,ae(s-t+s) = ae(s-t) .

Re 8.10iii. This is a straightforward consequence of 8.10i and 8.10ii.
Re 8.10iv. As for 6.10iv; left to the reader. QED

PROPOSITION 8.11. The following is IiDy-deducible:

(8.11i) = uni[0, Mg];

(8.11i1)  wnilt, M| = uni[t’, Ms].

Proof. Re 8.11i. Almost trivial; left to the reader.

Re 8.11ii. Employ 8.3i and 6.7ii with two inferences according to 8.5:

co=ca=>c1+s=c2+s

unilt, M), {t,c1fe Mo, {t,cofe Mo = c1 +s=ca+ s

uni[t, Ms],c1 + s =a,{t,cijeMa,co + s =b,{t,cafe Ma = a=0b

basm, [t a] = unift, M), stp g [t',al, stpyy [t/ a] = a=b

unilt, Ms], bas m, [t', a] V stpMS[t', a), basm,[t', a] V stpMS[t', al]=a="b
unift, Ms],{t',afe M, {t' ,bfe My = a=1b

unilt, Ms] = unilt’, M.] ' QED

CONVENTIONS 8.12.
(1) €4, := unif*1, Ap) 01,0+ x1fe Ay 0 (b + 1) eN.
(2) €rp, = aeN ouni[x1, Mgl olx1,a-x1JeMgao(b-*1)eN.
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PROPOSITION 8.13. The following is IIDy-deducible:
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(8.13i)

unift, My],t, s - tfe My, €a,,5 -t =b= (s-t')eN;
(8.13ii)

uni[b, M), (b, My [b]fe My, (a-b)eN,s =a,t =b= (s-t)eN.
Proof. Re 8.13i. Employ 8.10i:

unift, Ms], {t,s - tfeMs =>s-t' =s-t+s

uni[t, Ms], {t,s - tfe Mg, s-t=b=s-t' =b+s

ceN’ = ceN°  uni[t, Ms],{t,s - tfe Ms,b+s=c,s-t=b=>s-t' =c

uni[t, M), {t, s - tJe Ms,ce N, b+s=c,s-t=b=ceN'Os -t =c

unilt, Ms], {t,s - tfe Ms,ceN,b+s=c,s -t =b= (s-t')eN

unilt, Ms],(t,s - tfje Ms,ce N'Ob+s=c,s- t=b= (s-t')eN

uni[t, Ms],{t, s - tfe Ms,\Jy (yeN'Ob+s=y),s- t=b=(s-t')eN

unift, M), {t,s - tfe Ms,(b+s)eN,s-t=b=(s-t')eN

unilt, M), {t, s - tf e Mg, uni[s, Ap), (s, Ap[s]f€ Ap, (b + s)eN,s-t =b= (s-t')eN

uni[t, Ms), {t,s - tfe Ms,€x,[s],s -t =b= (s-t')eN

Re 8.13ii. Employ 8.7i and 8.7ii:

s=a,t=b=(s-t)=(a-b)

ceN = ceN’ (a-b)=c,s=a,t=b=(s-t)=c

ceN’ (a-b)=c,s=a,t=b=ceNo(s-t)=c
ceN' (a-b)=c,s=a,t=b= Vy(yeN'o(s-t) =y)
ceN° (a-b)=c,s=a,t=b=(s-t)eN
ceN'o(a-b)=c,s=a,t=b= (s-t)eN
VylyeN'o(a-b) =y),s=a,t=b=(s-t)eN
(a-b)eN,s=a,t=b= (s-t)eN
aeN", uni[b, M), b, Mo[[b]fe Mg, (a-b)eN,s =a,t =b= (s-t)eN
Cum,,s=a,t=b=(s-t)eN ]

QED
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PROPOSITION 8.14. The following is IiDy-deducible:
(8.14i) = (s-0)eN;
(8.14ii)) aeN" = aeN ouni[0, M,]c{0,a-0je Myo(a-0)eN.
Proof. Re 8.14ii. Employ 4.6i and 8.9i:
= 0eN’ =a-0=0
=0eN'o(a-0)=0

= Vy(yeNo(a-0)=y)
= (a-0)eN '

Re 8.14ii. This is a simple conjunction of 8.11i, 8.9ii and 8.14i. QED

ProOPOSITION 8.15. The following is I}D%Fg -deducible:

(8.151)  seN", unilt, M), {t,s-tje M, (s-t)eN = (s-t')eN;
(8.15i1))  3[seN ouni[t, Ms]olt,s tfe Mso(s-t)eN] = Cpy,[t].

Proof. Re 8.15i. In the first line let 7y := unift, M;] and Fy = (¢, s -
tfe M . Employ 7.3i, 7.3ii, and 8.13i:
beN = €4,[0] 3[Ca,ld] = Calc] €Ca,ls],F1,Fo,s-t=b=(s-t)eN
seN", be N, uni[t, M), {t,s - tfeMs,s -t =b= (s-t')eN
seN° unift, Ms],{t,s - t§e M, beN",s -t =b= (s-t')eN

+9

seN° uni[t, M],{t, s - tfe M, beN°Os-t =b= (s-t')eN
seN°, uni[t, M), {t, s - tfe Mo, Vy (yeN'os-t =y) = (s-t')eN
seN°, uni[t, Ms],{t,s - t§eMs, (s -t)eN = (s - t')eN .

Re 8.15ii. Essentially a conjunction of 8.11ii, 8.10iv, and 8.15i; left to the
reader. QED

PROPOSITION 8.16. ID#s - seN,teN = (s-1)eN.
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Proof. Employ 8.14ii, 8.15ii, and 8.13ii with an inference according to
4.7viii:
LiD%[Q

0eN" = € 0] 3[Erld] = Canld]  Eanlbls = art = b= (s-1)eN

+9
beN",aeN",s=a,t =b= (s-t)eN
acN'Os=a,beN'Ot=0b= (s-t)eN
Vy(yeN'os =y),Vy(yeN' ot =y) = (s - t)eN QED

REMARK 8.17. While in the case of addition, seN° = s'e N was suffi-
cient for proving the totality (cf. 7.2ii above), a proof of the totality of
multiplication also requires se N, teN = (s + t)eN, i.e., the totality of
addition. This is what makes the number of Z-inferences go up.

9. Exponentiation

Given the treatment of addition and multiplication, I can dispose fairly
quickly of exponentiation. Many of the following propositions will only be
listed without proof.

PROPOSITION 9.1. There exists a term & satisfying:
g = )\legxg ((IQ = O AN I3 = 1) \Y
Vi Vyz Vys (21 = yr1oae = yy 023 = ys - 41 0{{y1, y2/, ysf€€) .

Proof. Asusual, this is an immediate consequence of the fixed-point prop-
erty. QED

CONVENTIONS 9.2. (1) The following abbreviation is introduced to sim-
plify presentation:

Es = Mxaxsz((ze =0Az3=1)V
Vi Vy2 Vys(y1 = soyy = x20y3 - y1 = 2300y1,y2), y3)€E) .
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(2) In order to save space in presentations, I shall occasionally use the
following abbreviations:
basg [t,7] for t=0Ar=1,and
stpe, [t,r] for
Vi V2 Vys(yr = soyy = z20ys - y1 = 230((y1, y2), y3)€€) .

PROPOSITION 9.3. The following is LDy -deducible:

(9.31) basg [s',7] = ;
(9.3i1)  stpe [0,7] = .

DEFINITION 9.4. s := &[t]. I shall use &[t] and s® interchangeably.

PROPOSITION 9.5. The following is IIDy-deducible:

(951)) s=t=s"=1";
(9.5i) s=t=r"=r".

PROPOSITION 9.6. The following is IIDy-deducible:

(9.6) = {0,17¢&, ;
(9.6ii) (U, rje&s =W, r-sjes.

PROPOSITION 9.7. The following is LDy -deducible:
9.7)  =s"=1;
(9.711)  =10,s"V€é&,.

PROPOSITION 9.8. The following is IIDy-deducible:

9.8i) unils, t, &), {t, s'Se &, ae(s’) = ac(s' - s);

( [
(9.8ii) unils,t,E],{t,s'Ve&s,ac(s" - 5) = ae(s);
( [
( [

9.8iii)  wnilt, &), t, s Ve = 5" = st s,
9.8iv)  unilt, &), 2L, s' Ve &) = ', st Ve&, .
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Proof. As usual. I only treat 9.8ii.
ac(c-s)=ae(c-s)
t,s'5e &, (t,bfc&s = {t,s'Ve&olt,cJeEs  s' =c,ac(s-5) = ae(c-s)
t,s'e&snlt, cfeEs — st =c,(t, s Ve, ae(st - 5),{t,cJeEs = ac(c- s)
unifs,t,E],1t, s e Es,ae(s' - 5),t,cfeEs = ac(c- s)
unifs,t,&],(t,s' e &, ae(s" - s),b=rc-s,{t,cJe&s = ach
unils,t,E),t, s' e Es,ae(s' - s), ', bjeEs = ach
unifs,t, ], {t,s' e &, ae(s" - s) = (', bfeE — aeh
unifs,t,E],t, s e E,ae(s' - s) = Ny (W', yjeEs — acy)
unils, t,€],1t, s'Ye &, ae(s' - s) = ae(s’) ' QED

PROPOSITION 9.9. The following is TIDy-deducible:
(9.91) = unil0, &) ;
(9.9i1)  wnilt, &) = unilt’, &)

CONVENTION 9.10. €¢, := aeN guni[+1,E]o{*1,a* je&,na* eN.

PROPOSITION 9.11. The following is IIDy-deducible:
(9.111)  wnilt, &), {t, s'Te &y, €ag,[s], 8" = b= s' eN;
(9.11ii))  aeN ounifb, &) olr,a’fe€,0a’eN,s =a,t =b = steN.

PROPOSITION 9.12. The following is IDy-deducible:
(9.12i) = aeN;
(9.12i))  aeN" = aeN ounil0,&]070,aeE,0a’eN.
Proof. Re 9.12i. Employ 9.7i:

=1eN’ =a' =1

=1eNoa® =1
= Vy(yeN'oa’ =y)
= a’eN ' QED
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PROPOSITION 9.13. The following is I}D%“E‘ -deducible:

(9.13)  seN", unilt, &), (t, s'Ve &, s'eN = ' eN;
(9.13ii)  3[seN"ounit,&]olt, stfeEsnsteN]|

= seN ounilt’,E]olt,s" JeEsns’ eN.

Proof. Re 9.13i. Employ 8.14ii, 8.15ii, and 9.11i with an inference ac-
cording to 4.7ii. In the first line, let €[s, t] stand for unilt, &), {t, s'Se&; :

L'D{

beN" = €, 0] 3[€aq[d] = Cat[c]  €[s,1], Cagyfs] 8" = b= s €N
seN°, unilt, &],1t, 8"V &, be N, s" = b = s eN

+9

seN°, unilt, €], 1, s'Ve&s, beN st = b= s eN

seN, unilt, &, {t, s'S &, Vy (yeN'Os' = y) = 5" €N

seN, unilt, &), U, s' e, s'eN = s eN
Re 9.13ii.

LiD%hs

seN°, unilt, &),1t, 'V e, s'eN = s eN

seN°, 2[unilt, £]], 2[{t, s'Se&s], s' N = (¢, s e, s eN

seN°, 3[unilt, &), 2[(t, s'V €], s' €N = unilt, ] o {t, st/>°e€5 0s' eN

seN°, 3[unilt, £.]], 3[(t, 'S e&4], 3[s' eN] = uni[t, £ 0t , s JeE st eN

3[seN ounilt, & olt,s'Ve&s 0s'eN| = se N o unilt, &) D?t'7st/>°egs ns'eN
QED

PROPOSITION 9.14. IIDZ27 - seN,teN = s'eN.

Proof. Employ 9.12ii, 9.13ii, and 9.11ii with an inference according to
4.7viii:
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LiD)%fls

aeN = €. 0] 3[Ce[d] = e [¢]  Celbl,s = a,t=b= (s')eN

1N s—a,beN t—b— s'eN -
aceN'o0s=a,beN ot =b= s'eN
Vy(yeN'os=y),\y(yeN' ot =y) = s'eN
seN,teN = s'eN ' QED

REMARK 9.15. The totality of exponentiation presupposes that of addi-
tion and multiplication: that adds up to 27 Z-inferences.

10. The series of primitive recursive functions continued

So far I have considered the following two-place primitive recursive func-
tions:

(bO(avb) :a+ba
¢1(a,b) =a-b,
¢2(a,b) =a’.

They can be seen as forming the beginning part of a series:?* just as
multiplication is the iteration of addition in the form

at+a+...+ta=a-n,
exponentiation is the iteration of multiplication in the form
a-a-...-a=a".

This can be continued to a super-exponentiation:

a

24 As has been done in [12], p. 185 ([27], p- 388), and also [13], p. 336, to motivate
the formulation of the Ackermann function.
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which would be governed by the following recursion equations:
¢3 (a/u O) =a,
(]53(&, b/) = a¢3(a,b) , Or: ¢2(aa ¢3(a7 b)) .

In general, a series of functions ¢, can be defined for n > 2 as follows:

(bn/ (CL, O) =a,
¢n/(aa b/) = ¢n (CL, Gur (av b)) :
In terms of their recursion equations, we have the following:

a, ifb=0;

do(a,c)’, if b=c for some c.

(bO(aa b) = {

0, ifb=0;
oo(¢P1(a,c¢),a), if b=c for some c.

(bl(a, b) = {

1, ifb=0;
o1(p2(a,c¢),a), if b= for some c.

¢2(aab) = {
a, ifb=0;
b2(p3(a,c),a), if b= c for some c.

¢3(a, b) = {

a, ifb=0;

¢On(dn (a,¢),a), if b= ¢ for some c.

¢n’(a7 b) = {

The recursion equations for the functions ¢, are I}D%“—deducible,
and that for all n € N. It is the proof of the totality of ¢, that requires
recourse to the totality of the functions ¢ with k < n and thus can be
expected to be UD%“}"”—deducible.

Now it is well-known that Ackermann’s function can be presented as a
kind of totalization over this series, by turning the index number of the ¢y
into an additional argument. Its recursion equations are no longer LiD%—
deducible; we need something like the reinforced necessity operator that
I introduced in 23], pp. 136-159. But this will be the topic of a follow-up
to the present paper in which I will consider the complexity of k-recursive
functions in more detail.
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11. Z-inferences as a measure of complexity?

Towards the end of his famous address entitled Uber das Unendliche (“On
the infinite”), Hilbert declared (in translation):25

The role that remains to the infinite is [...] merely that
of an idea—if, in accordance with Kant’s words, we understand
by an idea a concept of reason that transcends all experience
and through which the concrete is completed so as to form a
totality[.]%”

Hilbert’s proof theory was meant to justify the use of classical logic for this
supposed role of infinity as “merely that of an idea”, but, cautiously put,
his program was not successful. If this is taken to indicate that the role
of “a concept of reason that transcends all experience” cannot simply be
reduced to that of a neutral supplementation, then the question regarding
the nature of the infinite and its appropriate logic would have to be raised
again.

Intuitionistic logic, despite its declared aim to overcome classical logic
in its treatment of the infinite is not a suitable alternative: it remains
within a somewhat classical paradigm. As Girard put it:

Classical and intuitionistic logics deal with stable truths:
If A and A = B, then B, but A still holds.?®

This is a hallmark of contraction and that’s why abandoning contraction
recommends itself when confronting the possibility of unstable truths —
something that may well happen when dealing with infinity.

With contraction available, resources can be multiplied ad libitum
at no extra costs.?? This proves vital when it comes to formulating a
term that is to capture exactly the natural numbers.?? The induction

25 The idea put forward in this section is very tentative, indeed, and should be
taken with a pound of salt. In any case, it is what motivated my investigations into
how many Z-inferences are needed to prove the totality of certain primitive recursive
functions.

26 [27], p. 367.

2727], p. 392.

2819], p. 1.

29 In Girard’s diction “contraction is the fingernail of infinity” ([7], p. 78).

301t is easy enough to provide a term that captures all natural numbers, but the
point for induction is that it is only the natural numbers that are captured. This is
what I labeled “exclusion principle” in remarks 116.6 and 119.1 in [21], for example.
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step is available as often as one likes, but it only has to be accounted
for once. Without contraction this changes: with assumptions having to
be accounted for, the formulation of the induction step requires special
attention to the effect of specifying how often it is available. This is what
Z-inferences were designed to accomplish.?! They provide an alternative
approach to infinity — and this approach is what I want to propose as a
basis for a measure of complexity: how many Z-inferences are required in
the proof of a particular result.

In view of these considerations I should emphasize that my approach
is not so much aimed at a notion of computational complexity, but more
at something like a metaphysical complexity.

Now recall the results of the foregoing sections:

1. The totality of the predecessor function is I}D%“—deducible;

2. the recursion equations of primitive recursive functions are LiD%“—
deducible;

the totality of addition is I}D%Tg—deducible;

the totality of multiplication is LiD%“S—deducible;

the totality of exponentiation is LiD%[”—deducible;

In general, the totality of ¢, can be expected to be I}D%W"W—de—
ducible.

How can this be linked to a notion of complexity? Not surprisingly, per-
haps, the suggestion I want to make evokes consistency proofs. The idea
is that the number of Z-inferences in deductions determines how high
an induction is needed for a consistency proof. As is well-known, for the
system which allows no Z-inference at all (IID,), an induction up to w
suffices, but for the realm beyond that I need a conjecture.

32

R

CONJECTURE 11.1. The consistency of I}D%T“ can be established by an
induction up to w™tT.

Comment. This would be in accordance with the consistency of I}D%
being w“-provable: every LiD%—deduction is a LiD%rn for some n € N.

31 There are alternative ways of doing this such as [16] and [19] neither of which,
however, is designed to capture full primitive recursion.

32Tt must be understood that the following deducibility claims indicate upper
bounds only, i.e., I haven’t established that any of the proofs, be that of the recur-
sion equations or the totality of addition, multiplication, or exponentiation cannot be
reduced to less Z-inferences.
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In view of the foregoing conjecture, the following hierarchy is sug-
gested by taking the proof of the totality of a function as the basis for a
measure of complexity:

1. the predecessor function is assigned the complexity w?;
addition is of a complexity > w? and < w!;
multiplication is of a complexity > w? and < w'?;
exponentiation is of a complexity > w* and < w?®;

in general, the function ¢, is of a complexity > w®! and <
w9n+10 .

G

If this is continued as suggested at the end of the last section, the com-
plexity of a function defined by nested double recursion can be expected
to be somewhere above w®. Thus the measure of complexity suggested
here differs quite significantly from the one suggested by Rozsa Péter’s
work according to which nested n-fold recursion would have a complexity
of w™. This difference has its origin in a different treatment of infinity as
expressed in the formulation of the term N”.

What remains is the question of whether this hierarchy is immune
to the possibilities of reducing an induction up to w?, for instance, to
an ordinary one. Of course, my immediate response would be to direct
attention, once again, to the different treatment of infinity. The point is
simply that these reductions are based on a classical form of induction,
i.e., one involving classical logic, in particular contraction, albeit on a
meta level. On the basis of the present resource conscious logic, not even
course-of-value induction (or: strong induction) is reducible to ordinary
induction. In the classical case (of suitable higher order), course-of-value
induction can be established in the form

seN, Ay(Az(z <y — Flz]) — Myl = 3],

where N is the term

AN Ny(\z(zey — 2'ey) — (0ey — zey)),

whereas its dialectical counterpart requires a necessity operator:33

seNOAy(Az(x <y — Fz]) — Fly] = Fls]-

33 Cf. [22], p. 676. Tiii.
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Differently put, if strong induction (in its classical form) is captured by
the term

N =M Ay(Az(Az1(z1 < 2 — z1€y) — z€y) — zey),
then the following is classically provable:
(11.48) sedr Ny(A\z(zey — 2 ey) — (0ey — zey)) = seN"'.

To see this, take € := A\ y(y < *1 — yeN") and confirm that the following
is provable, classically as well as dialectically:

= ¢[0],
Cla), Az(€lx] — xeN") = €[d],
¢[s'] = seN".

In the classical case, this yields 11.48 by means of a simple induction, but
not so in the dialectical case. It’s the side wif A x(€[z] — xeN") which
makes things more complicated. Instead of a proof of 11.48 by means of
a simple induction one only gets

LD = N CAr Ay(OA2(Az1 (21 <2 — z1€y) — z€y) — xey),

i.e., the reduction becomes more costly of deductive means. This is re-
source consciousness manifesting itself.

This, I contend, matters in the case of induction up to w? (and beyond,
of course) as well. To be sure, this is not meant to serve as a proof of
the impossibility of reducing induction up to w? to ordinary induction
in contraction free logic, but just to indicate, how a familiar classical
strategy may turn sour in the case of contraction free logic: a reduction
of induction up to w? to an induction up to w may require an induction
up to w? — provided, of course, one works within a contraction free logic.

12. Appendix: Natural numbers and elements of ¥

The term N°, which is designed to represent the set of natural numbers
on the formal level, has been introduced via a notion of weak implication
which, in turn, was based on a notion of having available a certain wiff
a certain number of times. Having available a wif a certain number of
times, however, does not require a full-fledged notion of natural number,
but only that of a certain proto-number, elements of the collection W,
which was captured in the formal notion IT".
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In definition 2.10 (2) above, a correspondence has been introduced
which provided a link between natural numbers (i.e., elements of N) and
elements of W. I shall now provide a term that will take care of this
correspondence on the formal level, i.e., relate IT and N°. In character
this term resembles a primitive recursive function, only that it doesn’t
have values in the natural numbers, but ¥ instead.

PROPOSITION 12.1. There exists a fized point V such that
LDy V=Az1zs((x1 =0 029 =1)V
Vi Vyz (21 =y 0z = y3 0ly;, y2f€V)).
The treatment is essentially the same as for addition (treated as a

one-place function) only that the values are not in the natural numbers.
I just list the relevant properties without proof.

PROPOSITION 12.2. The following is IiDy-deducible:
(12.21) =0, Iev;
(12.2ii) {5/, t)ev = {s",tfev.

PROPOSITION 12.3. The following is IIDy-deducible:
(12.31) = V[0'] =I;
(12.3ii) = {0",V][0']fev.

PROPOSITION 12.4. The following is IIDy-deducible:
(12.41)  unils',V],{s",V][s']fev = V[s"] = V[s']";
(12.4ii)  uni[s’,V],{s",{s",V[s]feV = (5", V][s"]feV.
PROPOSITION 12.5. The following is IDy-deducible:
(12.51) = unil0’,V];

(12.5i1)  unis’,V] = uni[s",V].

PROPOSITION 12.6. The following is IIDy-deducible:

(12.61) = uni[0’, V] o0/, ITev;
(12.6ii)  2[uni[a,V]oia,V[a]feV] = uni[a’,V]ola’,V][d']feV.
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PROPOSITION 12.7. IIDZ4 - seN" = V[s"] = V[s']! .

Proof. As usual, employ an inference according to schema 4.7vii, in the
present case with 12.6i and 12.6ii. QED

Next comes totality in the sense of showing that s'eN" = V[s'] eIT.

PROPOSITION 12.8. The following is LDy -deducible:
(12.8i)) = uni[0',V] 00, V[z]fevov][0] eIT;
(12.8i)  3[unila’,V]0ld’,V][a']feVnV][a’] eI] =

unila” V] ola”,V]a"]§eVova”’] eIl.

PROPOSITION 12.9. TD | s'eN" = V[s'] Il .

Proof. As usual, employ an inference according to schema 4.7viii, in the
present case with 12.81 and 12.8ii. QED

PROPOSITION 12.10. IIDy F = V[0] = ¥

Proof. Straightforward; left to the reader. QED

REMARKS 12.11. (1) It will be obvious that [A/V[n']] < [A]™ can be
established by a meta-theoretical induction on n. In other words, the
meta-theoretical notion of [A]™ can be replaced by the formal notion
[ANV[]].

(2) What 12.10 says is basically that the function V is not “defined” for
the argument 0 in the sense of not having a value in ¥.
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